Categories
Science and Marxism

Galileo and the relativity of space

Some elementary scientific errors appear in Reason in Revolt, which quite undermine the authority of the author.

In this chapter we discuss the ideas of Copernicus, Galileo and – a little – Einstein. Those of a non-scientific background are welcome to skip this lengthy chapter – but it does attempt to show in familiar language the historical development of our ideas about the universe, and get to the core of an number of scientific issues related to the Big Bang.

One of the elementary scientific errors in Reason in Revolt is an inability to grasp Galileo’s ‘principle of relativity’, confusing it with Einstein’s theory of relativity and disparaging it. In this chapter we will attempt to disentangle this confusion by discussing this principle of relativity as presented by Copernicus, Galileo, Newton – and more profoundly by Einstein.

Another error Woods makes is to proceed from this failure to the conclusion that modern physics is saturated with “subjective idealism” since, Woods argues, Einstein was always concerned with “the observer” rather than the physical processes taking place independently of any observer in what he believes to be absolute space and time.

Woods misunderstands the term “the observer”, as if Einstein means the particular, subjective viewpoint of an individual, rather than a location from which an objective measurement can be taken.

Copernicus’ revolution

Galileo Galilei (1564-1642)

Aristotle’s heavens appeared incorruptible to western astronomers until the seventeenth century when, in 1609, Galileo constructed his telescope. Galileo discovered that there was change in the spheres, because moons orbited Jupiter, and the Earth’s moon was pitted with craters and not perfect. This gave rise to a new consciousness among the most advanced thinkers in the Renaissance.

Stars seemed to some to stretch to infinity. But Galileo did not see infinity through his telescope, nor has it ever been seen – only inferred by extrapolation, by the quantitative extension of finite observations.

Galileo defended the Copernican system, which redrew the map of the universe by rearranging the ‘perfect spheres’ so that the sun rather than the earth was at the centre of the solar system.

Nicolaus Copernicus’ famous On the Revolution of the Heavenly Spheres, published in 1543, is thought to have invested the word ‘revolution’ with its ‘revolutionary’ connotations, in the sense of a complete change or an overthrowing of the old conditions.

In his opening remarks, Copernicus briefly contrasted his revolutionary alternative of an immobile universe in which the earth rotates with the old Aristotelian idea of immense but finite heavens which rotate daily round an immobile earth. Ptolemy of Alexandria (87-150 CE), Copernicus tells us, had asserted that if the earth rotated, “this movement, which would traverse the total circuit of the earth in twenty-four hours, would necessarily be very headlong and of an unsurpassable velocity.” This rotational velocity, Ptolemy says, would have violently torn apart the earth long ago and all the pieces would have “passed beyond the heavens, as is certainly ridiculous”. (On the Revolution of the Heavenly Spheres, book one, Introduction, point eight, pp22-3)

Ptolemy assumes that if the earth is rotating we would certainly experience it. In fact a point on the equator of the earth is moving, in round numbers, at an astonishing 1000 miles an hour as part of our 24 hour daily rotation. Yet we do not experience this motion. Ptolemy finds the idea ridiculous.

Copernicus replies: “Why didn’t [Ptolemy] feel anxiety about the world instead, whose movement must necessarily be of greater velocity?” In other words,  Copernicus argues, in this seminal work: Would not the much greater rotational movement of the heavenly spheres around the earth, as defended by Ptolemy, have torn them apart and thrown them outwards? But this objection was not meaningful to the ancient philosophers, since they believed the “heavenly spheres” to be “incorruptible” and unchanging, incapable of any disturbance.

Copernicus then asks the reader a quite remarkable question: Have “the heavens become so immense, because an unspeakably vehement motion has pulled them away from the centre, and because the heavens would fall if they came to rest anywhere else?”

This remarkable question bears comparison with two aspects of the Big Bang theory. Copernicus asks whether the universe is so large because it has expanded from the centre and whether this expansion has prevented the collapse, under the pull of gravity, of the heavens, which if they came to rest would be bound to fall back to the centre. These tentative suggestions remarkably anticipate modern theory. Copernicus seems to present in one brief remark essentially an explanation to the problem of why gravity has not caused the supposedly static universe (the model of the universe which Woods defends) to collapse in on itself – because it is expanding outwards rapidly. This problem of gravitational collapse is a problem for supporters of the static universe which Woods had not fully grasped 450 years later. Needless to say, this problem is naturally resolved by the Big Bang theory. It will be touched on further in the next chapter. 

Copernicus ponders: “[I]f this reasoning were tenable, the magnitude of the heavens would extend infinitely.” Perhaps Copernicus has in mind Aristotle’s potential infinity – that in this scenario, the heavens would go on expanding indefinitely. But if Copernicus means “infinitely” in the sense Woods presents it (Aristotle’s actual infinity), this could only be true if the universe had existed for an infinite period of time. Yet if the universe is expanding “from the centre”, it must have began at some finite point in the past.

Galileo’s defence of Copernicus

What were Galileo’s views on an infinite universe? Just nine years before Galileo began looking through his telescope, in 1600, Giordano Bruno was burned at the stake by the Inquisition, after being tortured for nine years for preaching that the universe was infinite. He refused to recant. So, perhaps not surprisingly, Galileo did not express, or at least did not publish, any views on whether the universe was infinite or not. But he did discover additional contradictions which the idea of infinity leads to, (anticipating some of the concepts of the late nineteenth century mathematician George Cantor, who we discuss very briefly below) and elsewhere notes that infinities “transcend our finite understanding… In spite of this, men cannot refrain from discussing them… we attempt, with our finite minds, to discuss the infinite, assigning to it properties which we give to the finite and limited; but I think this is wrong…” (Galileo, Dialogues Concerning Two Sciences, First day, p418)

The ‘corruptible heavens’ which Galileo viewed through his telescope implied – by Aristotle’s own admission – a beginning and end to the universe, and this was bound to disturb all accepted dogmas.

Motion is relative, not absolute

Galileo set out to defend the theory of Copernicus that the sun, not the earth, was the centre of the solar system. This meant that, in addition to its “violent” rotational motion, the earth must move with incredible speed round the sun. To prove this, Galileo needed to demonstrate the rather surprising fact that steady motion in a straight line, such as the earth’s motion approximated to, cannot be readily detected by someone experiencing this motion (unless by reference to external evidence). 

Now the bumps and jolts we often experience when in motion are little accelerations – changes in motion from one speed to another. Acceleration is not steady motion. This is critical to our understanding of Galileo’s argument, since our most common experience of motion will consist of increasing and decreasing acceleration, and this misleads us, as it did in Galileo’s time, that we can tell, without external reference, if we are in motion. 

Steady motion in a straight line cannot be intrinsically experienced – such motion is not an “absolute” property of an object, as Aristotle had previously thought. In the next section of this chapter below we’ll see how Galileo does this. 

In the section, Problem Not Resolved, Woods says:

Einstein was determined to re-write the laws of physics in such a way that the predictions would always be correct, irrespective of the motions of different bodies, or the ‘points of view’ which derive from them. From the standpoint of relativity, steady motion on a straight line is indistinguishable from being at rest. (p161)

As mentioned earlier, this was not a ‘Problem Not Resolved’, but the standpoint of the entire scientific community since Galileo argued that the earth moved – that despite this “violent motion”, roughly 67,000 miles per hour, people on earth experience no motion at all – that, in this particular sense, we find our “state of rest” indistinguishable from being in motion. Einstein applied it rigorously to motions that were very fast, that is, approaching the speed of light, with astonishing results.

Today we might imagine a person floating in a spacecraft with its thrusters turned off. Despite travelling at enormous speed, once the thrusters which accelerate the spaceship are turned off and the rocket is in steady motion, the objects and the astronaut experience weightlessness rather than any impression of the speed of the craft. A person on the earth experiences gravity rather than weightlessness, but no sense of the 30km per second speed of  the earth through space. We will return to this shortly.

Woods seeks to undermine Galileo’s arguments all the time believing it to be a facet of Einstein’s relativity, asserting instead the existence of absolute space and time – meaning, that if an object is in motion, that motion is a property intrinsic to itself – and this means that it “experiences” that motion in the way that Aristotle conceived. Thus a person on earth should experience the earth’s 30km per second motion.

We must untangle this in what follows. This error leads Woods to take essentially the same position as the supporters of Aristotle in their dispute with Galileo in his defence of Copernicus. Copernicus, we should add in passing, briefly anticipates Galileo’s arguments. (On the Revolution of the Heavenly Spheres, book one, Introduction, point five, p23)

What is this fundamental law of physics, the principle of relativity, which formed the basis of Newton’s first law of motion, and from which Einstein took the name ‘relativity’? Let us take a glimpse at what Galileo and Einstein said.

Galileo’s thought experiment

The followers of Aristotle’s orthodoxy in the early seventeenth century thought that if the earth was travelling round the sun, or rotating, this would cause many very visible effects:

How would birds find their nest again after they had flown from them? Why does a stone thrown up come straight down if the earth underneath it is rotating rapidly to the east? (The Galileo Project, http://galileo.rice.edu/sci/theories/copernican_system.html)

Aristotle himself provided arguments against the notion that the earth moved, since one school of ancient Greek philosophers, led by Pythagoras, proposed that the earth did move. For instance, Aristotle asks, why do “heavy bodies forcibly thrown quite straight upward return to the point from which they started” if the earth has moved in the meantime? (On The Heavens, book II, chapter 14)

In the same passage Aristotle also argued that if the earth moved, one would surely see the stars pass by: “… there would have to be passings and turnings of the fixed stars. Yet no such thing is observed. The same stars always rise and set in the same parts of the earth.” This was a very powerful argument, not experimentally refuted until stellar parallax was measured by powerful telescopes in the 1800s. (Stellar parallax is the apparent movement of a star caused by viewing it from different positions, for instance, when the earth has moved a sufficient distance in its orbit round the sun.) Galileo could only suppose (correctly) that the stars were at too great a distance for parallax to be observed with the naked eye.

Galileo suggested experiments to prove the followers of Aristotle wrong. Adopting a popular, accessible style and writing in the native language rather than the scholars’ Latin, Galileo begins by asking his audience to imagine they are shut up “with some friend in the main cabin below decks on some large ship”. While the ship is stationary, Galileo suggests conducting a number of experiments designed to test motion in space, such as throwing and jumping, and setting a bottle to drip into a jar below. Then, he suggests:

… have the ship proceed with any speed you like, so long as the motion is uniform and not fluctuating this way and that. You will discover not the least change in all the effects named, nor could you tell from any of them whether the ship was moving or standing still.  (Dialogue Concerning the Two Chief World Systems)

The ship, of course, represents the earth. Galileo is at pains to show that motion is “indistinguishable” from rest under these conditions, the accusation Woods levels at Einstein. 

The water still drips directly into the jar below – it does not fall behind the jar as the ship moves forward steadily. Many people have been below decks on a ship or car ferry, where you cannot see out, and experienced something similar: you cannot be sure if the ferry is moving or not, so long as it is going at a constant velocity. Galileo’s point is that a scientist, conducting experiments, could not determine by any experiment whether the ferry or, of course, the earth, was in constant motion or stationary either.

Einstein calls this Galileo’s principle of relativity.


ScientistMotion Universe
SpaceTimeSpaceTime
AristotleAbsoluteAbsoluteFiniteInfinite
GalileoRelativeRelativeFinite
(assumed)
Infinite
(assumed)
Table 2. Schematic summary of the views of Galileo added to table 1.

Einstein’s railway carriage

Thus far, the matter is quite clear. Einstein deepens this understanding, by discussing the trajectory of an object as seen from the two different standpoints – one at rest, and one in motion. And he truly deepens our grasp of precisely what it means to see the equivalence of these two.

Einstein discusses Galileo’s principle of relativity, which he calls “the fundamental law of the mechanics of [Galileo] Galilei-Newton” at the very beginning of his short popular primer, Relativity (first written in 1916 and still in print). He poses two questions:

I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls in a parabolic curve. I now ask: Do the ‘positions’ traversed by the stone lie ‘in reality’ on a straight line or on a parabola? Moreover, what is meant here by motion ‘in space’? (Einstein, Relativity, p9)

Dropped from the train, as seen from the footpath, the stone will continue moving forward as well as downwards, because before its release it is already set in motion forward by the forward motion of the train. Its downwards motion is accelerating under gravity. It will therefore cut out a curve (a parabola) in space as viewed from the footpath. You can plot this motion out on a piece of paper. But the train passenger, since he or she is also moving forward at the same speed as the stone, only observes the downward movement, so the stone appears to fall straight down to the passenger. If you find it difficult to visualise the effect of the stone falling without air resistance, on a fast moving train, imagine that the stone is dropped inside the carriage rather than out. It drops straight down. So it would outside the train, if it were not for air resistance, from the point of view of the train passenger.

Einstein reminds us that Galileo and Newton (in respect of his first law of motion) have shown that in reality both views, the one from the train, and the one from the footpath, are equally valid. Both views of the trajectory of the “misdeed” of dropping the stone, whether falling in a parabola or a straight line, furthermore, are objective descriptions of reality. This is quite a striking fact which we will explore further. But neither views are merely subjective impressions. Despite what Woods maintains, the subjective thoughts or impressions of individuals do not come into it.

Woods argues: “Einstein regretted his earlier subjective idealism, or ‘operationalism’, which demanded the presence of an observer to determine natural processes.” (p167) Einstein never demanded the presence of an observer to determine natural processes. It is a “complete misinterpretation of Einstein’s ideas” as Woods himself says slightly earlier (p163), without appearing to understand what he says. Einstein proceeds to re-phrase his own words this way:

The stone traverses a straight line relative to a system of coordinates rigidly attached to the carriage, but relative to a system of coordinates rigidly attached to the ground (embankment) it describes a parabola. (Relativity, p10)

It helps to consider the train to be a substitute for the earth. When we drop a stone on the earth it falls straight down despite the earth moving. What concerns us is the relative positions of the stone, as measured according to two different system of coordinates, or frames of reference, one moving and one stationary – the train and the footpath.

But does one frame of reference offer a correct description, while the other is merely secondary? No, they are both correct. At first, we may be tempted to say that the pedestrian on the footpath has the correct view or, to put the same thing another way, that the stone, as measured according to the frame of reference of the earth, is the correct measurement, because the pedestrian is the ‘stationary’ one, standing on the ‘stationary’ earth.

But the earth is not stationary. We must keep in mind that in the few seconds it took for the stone to fall, the earth and the stone have travelled perhaps sixty kilometres or more around the sun. Why take the earth as the correct or absolute reference point? In addition, the sun itself travels round our galaxy, and our galaxy is moving in a complex gravitational dance with our local cluster of galaxies. And all independent clusters of galaxies in the universe are moving away from us at great speed, in proportion to their distance from us.[1]

Whose space is the correct space? From the point of view of physics, each view, each measurement, whether from the railway carriage, the footpath, or the Andromeda galaxy, is equally valid. According to the Newtonian laws of motion which begin with Galileo’s insight (and which Newton acknowledged), the view from Andromeda is just as valid as the view from the train. Hence motion and space are relative to the observer (whether that observer is a person or a scientific instrument is irrelevant), meaning, relative to the frame of reference you choose to take – the train or the embankment in this case. 

Einstein’s universe

Now, according to classical Newtonian physics, we have no trouble at all translating the measurements of one frame of reference into that of another. They have a very simple, physical relationship. Suppose the train is moving at twenty miles an hour and a passenger is walking towards the front of the train at three miles an hour in the railway carriage. To put it another way, relative to the railway carriage frame of reference, the passenger is moving at three miles an hour. By simple addition, we say that the passenger is moving at twenty-three miles an hour relative to the footpath frame of reference – the speed of the train plus the speed of the passenger in the carriage.

We make this rather obvious point to make clear that no-one, whether Galileo, Newton or Einstein, is suggesting that, because the measurements are, in the common idiom, relative to the observer, these measurements are “subjective” in some way, or that physics has wallowed in subjective idealism ever since Galileo, which is the unintended essence of Woods’ claim.

However, Einstein realised that these calculations fail to take into consideration the speed of light. When we observed the train moving, we did so with the aid of light. But light does not travel instantaneously as our Newtonian calculation above assumed but at a definite speed. Furthermore, light has very unexpected properties. It is only once we have learnt about the strange qualities of light and have taken them into account that we can start to discuss Einstein’s universe. (In order to calculate the real transformation of the speed of the passenger relative to the carriage into his or her speed as measured from the platform, an equation associated with the physicist Hendrik Lorenz must be used, which takes the strange properties of light into account: the Lorenz transformation.)

What is space?

Asking what is meant by motion in space, Einstein says we “cannot form the slightest conception” of what ‘space’ means, since it seems to have two quite different values according to the person on the train and the pedestrian. Instead, he reconstructs the description of the stone’s trajectory in terms of two systems of coordinates – the moving train and the footpath. He concludes:

there is no such thing as an independently existing trajectory but only a trajectory relative to a particular body of reference. (Relativity, p10)

Therefore, in popular terminology, the motion of the stone dropped from the train must always be described according to some ‘observer’ – a particular body of reference – the earth, the train, the sun, etc, to have any meaning.

This is what Woods considers to be subjective idealism. But Woods cannot claim to have the authority of Marxism on this question (even if it were correct to use Marxism in this way). In fact, Engels also understood that there was no such thing as an independently existing trajectory. When Engels first conceived of writing about the dialectics of nature, in 1873, he began by noting the following:

1. The first, simplest form of motion is the mechanical form, pure change of place:

a) Motion of a single body does not exist – [it can be spoken of] only in a relative sense… (Dialectics of Nature, p329)

In words, Woods sometimes denies and sometimes echoes the idea that time and space are bound up with matter. But when he argues that, “Time and space are properties of matter, and cannot be conceived of separately from matter” (p146), it becomes clear from the context that Woods is not embracing Einstein’s theory of relativity, but essentially arguing that if a body is travelling at a certain speed, this motion through space and time is an inherent property of that body, without reference to any other body, in other words, not relative to it. In this sense, it is an expression of absolute space and time. And thus, as we will very shortly see, Woods expects that a person travelling very fast (such as someone sitting on the fast-moving earth) would experience that motion in “material damage” to their internal organs.

The earth’s motion must be judged in relation to other bodies, such as the sun. Taken as a single body, the earth’s motion “does not exist”, as Engels puts it. We may treat the earth, in accordance with our day-to-day earthbound experience, as stationary. The earth’s creatures do not experience its motion because space is relative.

This is the deeper understanding of the meaning of the statement that steady motion and rest are “indistinguishable”, as expressed by the fact that you do not experience the motion of the earth while sitting reading this page of text. Remember that all we are discussing here is Galileo’s principle of relativity and Einstein’s discussion of it. But Woods rejects this, thinking he is rejecting Einstein’s “subjective idealism”.

Clocks, twins and time

Despite calling Einstein’s special relativity “one of the greatest achievements of science” (p160), Woods proceeds, sometimes insidiously and sometimes openly, to attempt to denigrate Einstein’s relativity, particularly in the sections Problem Not Resolved, and Idealist Interpretations. (Einstein’s ‘special relativity’ deals only with the special case of motion unaffected by gravity or acceleration. His ‘general relativity’ includes gravity.)

Woods discusses the commonly used ‘twins’ example of the effect of motion according to the theory of relativity. Here, one twin goes on a high-speed intergalactic journey and returns. The effect is that she will have aged less than her earthbound twin – the amount depending on what fraction of the speed of light she travelled. Woods’ treatment is impeded by his failure to grasp Galileo’s principle of relativity. Let us see how Galileo’s science contradicts Reason in Revolt.

Woods begins:

A controversial idea here is the prediction that a clock in motion will keep time more slowly than one that is stationary. However it is important to understand that this effect becomes noticeable at extraordinarily high speeds, approaching the speed of light. (p163)

There is much that is wrong here but, above all, the effect of motion on the timekeeping of clocks is not “controversial”, it is incontrovertibly proved (as Woods admits elsewhere). For instance, navigation systems using the Global Positioning System (GPS) constantly make use Einstein’s special and general theory of relativity in about a dozen distinct types of calculations, in order to ensure the accuracy of their results, twenty-four hours a day. It is quite misleading for Woods to witheringly assert: “Unlike special relativity, experimental tests which have been carried out on [the general theory of relativity] are not very many.” (p172) Fifty years ago Woods’ assertions were true. The reader may have noticed already that Reason in Revolt is trapped in a kind of fifty-year-old time warp. (This is true for the second half of the book also, which we do not discuss in this review.)

In Einstein’s Universe, Nigel Calder describes the definitive experiment on this question, carried out in 1971 using four robust atomic clocks, which were placed aboard regularly scheduled commercial passenger jet aircrafts which took them right around the world. “One circumnavigation was made eastwards and one westwards, both journeys taking about three days. The result of the experiment was that the clocks no longer agreed about the time of day.” The clocks were compared to similarly highly accurate atomic clocks which remained at the US Naval Observatory in Washington DC. (Einstein’s Universe, p60)

The two experimenters, JC Hafele and Richard Keating, had predicted a loss of 40 nanoseconds eastbound, and the clocks did indeed lose time, although it was slightly larger, at 59 nanoseconds. Westbound the experimenters predicted a gain of 275 nanoseconds and the clocks gained 273 nanoseconds, a very close agreement indeed.

“In Newton’s universe, there would be no accounting for the discrepancies in such highly reliable instruments,” Calder remarks. Since then, subsequent experiments have tested the theory to far greater precision.

Woods proceeds to admit that this ‘time dilation’ effect, as it is called, has indeed been observed, and now objects: “The whole question hinges upon whether the changes, observed in rates of atomic clocks, also apply to the rate of life itself.” (p164) Woods’ line of argument could only arise if he has not grasped Galileo’s principle of relativity, since it does not matter in the least what is moving – living organisms or mechanical clocks – the point is their steady motion is measured relative to a stationary observer (another frame of reference, such as the earthbound twin). It is only relative to earthbound clocks that the clocks on the spaceship run slow.

In the section Idealist interpretations, Woods says, “it is not easy to see” how “the process of aging” of the astronaut twin can be “fundamentally affected either by velocity or gravitation, except that extremes of either can cause material damage to living organisms.” (Page 165, My emphasis)

He continues:

If it were possible to slow down the rate of metabolism in the way predicted, so that, for example, the heart-beat would slow to one every twenty minutes, the process of aging would presumably be correspondingly slower. It is, in fact, possible to slow down the metabolism, for example, by freezing. Whether this would be the effect of travelling at very high speeds, without killing the organism, is open to doubt. (p165)

Relativity, of course, makes no prediction about slowing down a person’s metabolism. It is not a biological science. But can extremes of velocity “cause material damage to living organisms” as Woods appears to believe? The followers of Aristotle’s orthodoxy in the early seventeenth century thought that if the earth was “travelling at very high speed” it would cause very visible effects, and ridiculed the idea mercilessly. Yet the entire earth’s population is going round the sun at roughly thirty kilometres a second, or one ten-thousandth of the speed of light.

Woods feels that the time dilation effect on “life itself” is “open to doubt” because he is convinced that travelling at very high speeds is injurious to life. Would not this very high speed “kill the organism” or at least cause some “material damage to living organisms” just as Woods ponders it might? Does our metabolism slow down? It does not, no matter how fast we travel at a steady velocity, because space is relative, as Galileo explained.

We must emphasis here another point that Woods fails to grasp. What is being discussed here is constant velocity or steady motion in a straight line. Woods also uses this term: “From the standpoint of relativity, steady motion on a straight line is indistinguishable from being at rest.” (p161) Einstein’s special theory of relativity, written in 1905, takes the special case of steady motion in a straight line (velocity), and excludes acceleration. Acceleration is quite different to steady motion. An accelerating jet fighter plane today can generate enough g-forces to kill the pilot if sustained for long enough. Einstein’s later general theory of relativity, published in 1916, deals with acceleration, and he showed that acceleration too can affect time and space.

But the entire point in the twins example is that the clocks and heart-beat of the space traveller moving at high speed are slow only relative to her twin on the earth. The motion of the spaceship is not an absolute motion, a spaceship which has the “property” of moving at high speed. Although it must have accelerated to its current speed, now it is cruising in steady motion it is only moving at its current high speed relative to the earth from which it departed. Relative to a frame of reference confined purely to the spaceship, the astronaut feels herself to be stationary, and her life processes are unaffected by her relative motion as she floats weightlessly inside her craft. She could “survive thousands of years into the future” (p164) but only as measured from the earth, only into the future of the earth, not as measured from the spaceship, where she will live a normal life span – disappointing as that may be. It is clear that Woods cannot consistently grasp Galileo’s principle of relativity here, let alone the ‘twins’ example itself in relation to Einstein’s relativity (which is more involved than can be adequately discussed here).

It is perhaps necessary to add that currently no spaceship can remotely approach the kind of speeds that would be necessary to observe a twin “time travel” years into the future in the way that Einstein’s theory of relatively revealed. These speeds must be a sizable fraction of the speed of light. Space flight currently renders astronauts imperceptible fractions of a second younger any earthbound twin, as measured by atomic clocks. Scott Kelly, who spent 520 days in orbit travelling at 28,000km an hour round the earth, is now 5 milliseconds younger than his twin Mark Kelly, Space.com reported (Einstein’s ‘Time Dilation’ Spread Age Gap For Astronaut Scott Kelly & his Twin, 13 July 2016).

The discussion of Einstein’s relativity in Reason in Revolt never grasps the seventeenth century scientific debate between Galileo and Aristotle’s supporters, and at no point clearly recognises the validity of Galileo’s arguments (as Engels certainly did) or of Newton’s first law of motion. Essentially, in this respect, Reason in Revolt sides with those who supported Aristotle’s views of a stationary earth, at the centre of the celestial spheres.

Woods makes a further error when, as discussed above, he asked whether “the changes, observed in rates of atomic clocks, also apply to the rate of life itself”. Woods tries to draw a distinction between processes taking place in humans or other living things and those in inanimate objects moving at high speeds. This is an unintentional departure from materialism, since it suggests humans or living things have a special, non-physical (and by implication therefore spiritual) essence which does not necessarily always obey the laws of physics by which material things are bound.

Criticising modern cosmological applications of Einstein’s relativity, Woods intones, “Here the study of philosophy becomes indispensable” (p216) but he has not grasped the problem, the most basic, elementary physics and, in fact, cannot escape from Aristotelian or Newtonian concepts of absolute space and time, on which his philosophical criticism of modern science is based. Philosophy is no use when you have no grasp of your subject.

Einstein applied the same relativity principle to time, but these considerations still do not yet depart, in essence, from classical Newtonian laws of motion. The issues that Einstein addressed which brought about an entirely new understanding of the universe will be briefly touched on later.[2]

Next: Newton: belief and contradiction


[1] For those familiar with these concepts: according to the satellite COBE’s 1996 measurements, our solar system is moving at roughly one thousandth the speed of light (about 300 kilometres per second) in the direction of the constellation Leo, relative to the cosmic background radiation. http://arxiv.org/PS_cache/astro-ph/pdf/9601/9601151.pdf. Our local cluster of galaxies is travelling at twice this speed in the direction of the constellation Crater. http://www.arxiv.org/abs/astro-ph/0210165 (NB: Incidentally, unlike velocity, rotational movement can be determined by experiment.)

[2] But we are justified in considering so closely Galileo’s contribution since, as the physicist Hermann Bondi once said, “I always say that Einstein’s contribution has a name for being difficult, but it is quite wrong.  Einstein’s contribution is very easy to understand, but unfortunately it rests on the theories of Galileo and Newton which are very difficult to understand!” (Quoted by Gleik, Issac Newton, p 200)

Categories
Science and Marxism

Aristotle on the heavens

“Aristotle would never have made the mistake of talking about a time before time existed,” claims Woods. (p209)

Woods quotes Aristotle on many occasions throughout Reason in Revolt. It is true that Aristotle believed that the universe was eternal. Yet it is not clear how familiar Woods is with Aristotle’s writing on time, space or infinity. In general, Aristotle takes a contrary position to that of Woods.

If one takes into account the limitations of his epoch, Aristotle achieved some quite remarkable insights into the nature of our universe. Even though Aristotle developed a logic that effectively usurped the ancient dialectics of Anaximander, Aristotle made occasional use of this ancient dialectics when discussing ‘the heavens’.

Woods presents Aristotle’s idea of time using this quote from his Metaphysics: “Movement can neither come into being nor cease to be: nor can time come into being, or cease to be.” Woods sneers: “How much wiser were the great thinkers of the Ancient World than those who now write about ‘the beginning of time’, and without even smiling!” (p145)

Aristotle (384-322BCE), Greek philosopher

Woods is skating on thin ice. In chapter three of Physics, Aristotle discusses the infinite. Aristotle argues, as we have already noted, that there are two sorts of infinity, potential infinity and actual infinity. He concludes very firmly that actual infinity does not exist. It is true, Aristotle explains, that one can always imagine an infinite process, such as in addition. It is not hard to imagine infinity in this sense. This is Aristotle’s potential infinity, but it will always remain finite. Something extra can always be added. So:

there is potentially an infinite… For it will always be possible to take something as extra. Yet the sum of the parts taken will not exceed every determinate magnitude… (Physics, chapter 3, part 6)

Aristotle’s conclusion is spelt out very clearly: “… the infinite has a potential existence. But… There will not be an actual infinite.”

Curiously, Woods does say that Aristotle, “Polemicised against geometers who held that a line segment is composed of infinitely many fixed infinitesimals, or indivisibles.” (p354) This means, in simple language, that Aristotle opposed the idea that something can be infinitely divided, or is comprised of an infinite number of parts. Woods does not state this clearly, but rather in general allows the reader to draw the conclusion that Aristotle supports the same views as Woods.

Aristotle was the first western philosopher to clearly explain the materialist position that there is no such thing as the actual infinite, as a separately existing thing. Woods argues that the infinite does exist, and he makes it a central tenet to the philosophy of dialectical materialism. This introduces an element of idealism (in the philosophical rather than the common or popular sense of the term) into Reason in Revolt and its interpretation of dialectical materialism, because the infinite is a human idea without any proof of its material existence. It is “beyond all human experience” Woods admits, and yet argues that science should accept this idea as the basis of cosmology!

An idealist approach, in philosophical terms, is one which makes ideas primary and the material world secondary. Idealism explains developments primarily though ideas, and relegates experience to a secondary role, whereas Marxism makes the experience of the material world primary, from which ultimately arises, in a general sense, our ideas about the world. It is important that Woods’ interpretation of dialectical materialism on this question is corrected. The philosophical meaning of the terms ‘idealism’ and ‘materialism’ is discussed in Engels’ Ludwig Feuerbach and the Outcome of Classical German Philosophy.

Woods takes the position that: “The reason why infinity can be used, and must be used, in modern mathematics is because it corresponds to the existence of infinity in nature itself.” (p358) Infinity is not used in this way in mathematics – as Woods concedes later on the same page – because infinity does not correspond to nature itself.

Indeed, Aristotle explains that the type of infinities used in mathematics corresponds to his potential infinity. After explaining the illusion of the actual infinity, Aristotle goes on to say:

Our account does not rob the mathematicians of their science, by disproving the actual existence of the infinite in the direction of increase… In point of fact they do not need the infinite and do not use it. They postulate only that the finite… may be produced as far as they wish… Hence, for the purposes of proof, it will make no difference to them to have such an infinite instead, while its existence will be in the sphere of real magnitudes. (Physics, chapter 3, part 6)

By real magnitudes, of course, Aristotle means concrete, measurable quantities that exist in the real world. This issue will be touched on very briefly in the short chapter, The infinite in mathematics. But more than mathematicians, scientists tend only to use Aristotle’s potential infinity, even among those who defended the idea of an infinite universe. When the Big Bang theory began to gain some adherents, the physicist Fred Hoyle attempted to develop an alternative theory which could explain current cosmological observations on the basis of an infinite universe. In a book popularising his ideas, written in 1955, he simply says: “the word ‘infinite’ should cause no conceptual difficulties. It simply means that however much of the [universe] we consider there is always more of it.” (Fred Hoyle, Frontiers of Astronomy, p277) The reader will perhaps recognise that Hoyle’s definition of an infinite universe avoids Woods’ ‘actual’ infinity and approximates to Aristotle’s potential infinity: it can be “produced as far as [you] wish”. Hoyle’s alternative theory, the Steady State theory, was not successful.

The infinite and the divine

Aristotle makes an exception of time and of the ‘divine’ in On the Heavens. The divine is taken to be infinite by definition. Aristotle explains that all philosophers agree that anything that changes has an origin in time and is finite, because change is a result of the dialectic of the interpenetration of opposites, of coming into being and passing away. If the heavens (by heavens Aristotle means the cosmos) are capable of change then, according to the dialectic of both Anaximander and Aristotle, they must have had a beginning, and will have an ending, and are finite.

But we do not see the heavens change, says Aristotle (apart from their fixed rotation). He says that the stars are “fixed” in the heavens, and that therefore the heavens must be incorruptible, imperishable, unchanging except for their rotational motion through the heavens, since “a thing whose present state had no beginning and which could not have been other than it was at any previous moment throughout its entire duration, cannot possibly be changed.” Whereas, “clearly whatever is generated or destructible is not eternal.”  (On the Heavens, book 1, part 10)

In other words, for Aristotle, dialectics teaches that if there is change in the heavens, the heavens must have an origin and an end. We now know, since Galileo, that there is change in the heavens – that is to say, in the universe. Galileo, incidentally, was convinced that with the evidence before him, Aristotle would have changed his views.

For Aristotle, the heavens’ eternity reflected the divine. The reason why Aristotle’s aether (the fifth element, the heavens) is eternal, “unaging and unalterable and unmodified”, should be clear to “all who believe in the existence of gods at all”. Aristotle maintains that the aether is the “seat of all that is divine”. (On the Heavens, book 1, parts 3 and 9) While the earth was corruptible, the heavens were not. (In the Renaissance and until the beginning of the twentieth century, the term aether, or luminiferous aether, was used to describe the medium through which scientists thought light propagated.)

Absolute and relative space and time

Woods might have been advised to hesitate before recruiting Aristotle to his cause. He also fails to mention that Aristotle thought the universe, although infinite in time, was a sphere of finite size. Aristotle discusses how concepts of time and space can be meaningful outside this rotating sphere of the heavens. This is fascinating because of its relevance to the concept of the universe that arose from Einstein’s relativity, and therefore from modern speculation about into what substratum the matter, time and space of the Big Bang universe might be expanding.

Firstly, we remember that Aristotle argued that within the heavenly spheres, material things fall down to the earth, because the earth happened to be “down”, at the centre of the universe. (Aristotle appears even to suggest that the earth is simply an aggregate of everything that has fallen “down”.) Fire, on the other hand, heads “up” to the heavens.

This meant that it could be said that for Aristotle time and space were absolute within the bounds of the universe. The earth was the absolute, stationary frame of reference for all motion. For instance, stones fell because the natural place of heavy bodies was the centre of the universe, and that was why the earth was there.

Later, Galileo attacked Aristotle’s views. He pointed out that there was not just one universal frame of reference for motion. For instance, if one was to imagine a game of table tennis below decks on an ocean liner, where the ship is travelling in steady, constant motion in calm seas, without rolling from side to side, one can readily predict that the players will not see any difference in the behaviour of the ball compared to a game on terra firma – all the laws of motion apply, relative to the frame of reference of the steadily moving boat, just as they do on the shore, relative to which the boat is moving.

This is obvious to us. Today, it is second nature to us that motion is relative, not absolute, even if we are not aware of the laws of physics. Yet to Aristotle’s way of thinking, if the boat was in motion (or, more significantly, if the earth was moving through space), the table tennis balls should behave differently, reflecting the forward motion of the ship (or earth), perhaps as though there was an invisible medium through which they and the boat passed, which affected their motion, sweeping the table tennis balls backwards off the table. This is a concept of absolute space and time.

As we shall show, however, although motion is relative, this does not mean that the motion of the table tennis balls is not an objective, measurable phenomenon – there is no lapse into subjective idealism, which is what Woods associates with the concept of relative space and time.

Before time, outside of space

But outside the ‘heavens’, the sphere of stars surrounding the Aristotelian universe, Aristotle concludes that there can be no space or time. Nothing exists outside the heavens, Aristotle says, therefore there can be no movement. But since “time is the number of movement” – time is the measure of change – there is no time outside the heavens:

But in the absence of natural body there is no movement, and outside the heaven, as we have shown, body neither exists nor can come to exist. It is clear then that there is neither place, nor void, nor time, outside the heavens. (On the Heavens, book 1, part 9)

Woods asks the defenders of the Big Bang theory: “So what was there before time? A time when there was no time! The self-contradictory nature of this idea is glaringly obvious.” (p210) At least since Aristotle, the answer to the question has not been quite so “obvious”. Since Einstein, the question has to be rephrased: What was there ‘before’ the space-time of our universe?

Woods, however, wishes to distinguish between the measurement of time, which must be relative to some process of change, and the “nature of time itself” (p161), and says: “… in cosmology, the confusion of measurement with the nature of the thing itself leads to disaster in practice.” (p158)

Table 1. Schematic summary of Aristotle’s views

ScientistMotion Universe
SpaceTimeSpaceTime
AristotleAbsoluteAbsoluteFiniteInfinite
Aristotle denied the existence of space and time outside the sphere of the universe

But what is this “time itself” or “thing itself” which is to be abstracted from the measurement of change? It is the old Newtonian concept of time. Newton says, in the Principia: “Time exists in and of itself and flows equably without reference to anything external.” It is truly as if there is somewhere a giant watch, held by a great timekeeper in the sky, keeping track of all celestial matter. We are jumping ahead a little, but for Newton, this timekeeper was god. Einstein did away with the timekeeper. Einstein’s universe, it is often said, is a “democratic universe” with no dictatorial authority laying down on each and every planet the strict time of the universe. Historically, in any case, the notion of a single time from which all clocks must be set arose in that same historical period which gave rise to Greenwich Mean Time, and should be placed in the context of the politics of Britain’s seafaring exploration and conquest of that period.

Woods does not elucidate exactly what “disaster in practice” has occurred as a result of science treating time, since Aristotle, as the measurement of change. Woods concedes, however, that according to this conception: “defining what time is presents a difficulty”, which he does not resolve. Time is indeed a complex phenomenon. But this “time itself” which Woods defends is Newtonian absolute time. On the facing page, Woods correctly asserts the opposing view. “It is impossible to regard [space and time] as ‘things in themselves’.” (p159)

Aristotle’s argument that space and time do not exist if there is no matter is, very roughly speaking, an acceptable hypothesis to science today. There is no meaning, in general, to time and space unless there is matter and energy. This is a materialist position, although it can be hard to grasp. But we will leave it to Galileo to demonstrate aspects of this important concept, which he did when he argued – against the followers of Aristotle – that the earth was in motion.

Next: Galileo and the relativity of space

Categories
Science and Marxism

The dialectic of becoming in ancient Greece

Woods seeks to enlist two ancient Greek philosophers in his scheme of the infinite, so this historical survey must begin with them. These two philosophers are Anaximander, from the sixth century BCE, and Aristotle, from the fourth century BCE.

Anaximander – the dawn of dialectics

Both materialism and dialectical thought can be traced back to the sixth century BCE and a remarkable and powerful city-state called Miletus, in Ionia (now Turkey).

In those days Miletus was experiencing a period of revolutionary upheavals as a rising merchant class challenged the old ruling elite for power. These revolutionary upheavals must have been earth shattering, like the 1789 French revolution (in which King Louis XVI was guillotined), or the 1917 Russian revolution. In those revolutions the whole social order was turned upside down – everything in the social order which seemed eternal was proved to be ephemeral, like the so-called ‘divine right of kings’. Something similar happened in Miletus. The rising merchant class for a time took power from the old aristocracy in a series of revolutions.

Anaximander (610-547 BCE)

This revolutionary period gave birth to the philosophy of dialectics. It is no coincidence that Kant and Hegel, who made dialectics central to their philosophy and greatly developed the ancient dialectics founded in Miletus, also lived in such revolutionary times – the period of the 1789 French revolution. It was in these momentous events, as one class clashed with another, that these philosophers came to believe that a clash of opposites leading to a sudden qualitative, fundamental change represented the true underlying nature of all things.

In ancient Ionia, this brought about the philosophical school thought to have been founded by Thales and Anaximander, and it is called the Ionian school of philosophy. It will hopefully become clear that our discussion of this ancient philosophy is very relevant to the claims made in Reason in Revolt about dialectical materialism and the universe.

No doubt reflecting the revolutionary times in Miletus, in which it must have seemed that nothing was permanent, Anaximander speculated that the entire universe had come into being from some unknown substratum and would eventually perish.

Woods says, “from the beginnings of philosophy, men speculated about infinity. Anaximander (610-547 BC) took it as the basis of his philosophy.” (p353) Woods’ assertion that Anaximander, who is said to be the first western philosopher to set down philosophical ideas in writing, took infinity “as the basis of his philosophy” gives a misleading impression of Anaximander’s views.

Far from suggesting that our universe was infinite, Anaximander said that our universe had come into being in a ball of fire and would pass away. What was revolutionary about the philosophy of Anaximander, particularly from the point of view of dialectical materialism, was precisely his challenge to those who, like Woods, intone: “Thus it has been. Thus it ever will be.” Anaximander describes how a “sphere of fire” grew from a “germ, pregnant with hot and cold, [which] separated off from the boundless”, forming several rings, from which arose the sun, moon and stars.

For Anaximander, the “heavens and the worlds within them” have a beginning. He also believed they have an end. Anaximander’s views, of course, remind us of the Big Bang picture of the birth of the universe, beginning in a hot dense state, a kind of “sphere of fire”.

Nevertheless, Anaximander postulated some sort of substratum from which the universe arose in its sphere of fire. “All the heavens and the worlds within them” have arisen from “some boundless nature”, Anaximander said. He seemed to use the term, ‘the boundless’, to describe this substratum. It appears that ‘the boundless’ represented some kind of inexhaustible source of the creation of matter. But the boundless does not by any means necessarily stand for an infinity of space and time – that interpretation might be no more than an anachronistic extrapolation based on a Newtonian outlook. Some modern translations use the phrase “boundless chaos”.

Even so, it is speculated that Anaximander’s concept of the boundless arose as an extension of the idea of the immortal Homeric gods. A typical viewpoint states: “Anaximander added two distinctive features to the concept of divinity: his Boundless is an impersonal something and it is not only immortal but also unborn.” (The Internet Encyclopaedia of Philosophy) So the origin of the boundless is likely to be associated with concepts of the divine. Thales is thought to have said: “What is the divine? That which has no origin and no end.”

Two centuries later Aristotle pointed out, in Physics (book one, part seven), that the ancient dialectics of coming into being always assumes what he called a “substratum”, and we have adopted his term in this review. So from what substratum might our universe have been brought about as if ‘from nothing’?

Dialectics and the quantum fluctuations in the vacuum of space

Woods discusses such a candidate substratum (indeed, one of the leading candidates) when he discusses the strange subatomic quantum fluctuations observed in the apparent vacuum of empty space, in which subatomic particles appear to come into existence fleetingly in opposing pairs, only to recombine and annihilate each other.

What is curious in this connection is that the philosophers of the school which Anaximander and others brought into being, the most ancient, Ionian school, were best known for their concept of coming into being and passing away. Today’s cosmology, in various ways, links this subatomic coming into being and passing away to the sudden coming into being of the universe in the Big Bang.

Towards the beginning of Reason in Revolt, Woods mentions in passing what he calls a “restless flux of swirling quantum waves” (p107), when attempting to discuss quantum mechanics. Towards the end of Reason in Revolt he correctly quotes from a passage in a now otherwise largely obsolete 1959 book by Banesh Hoffmann: “What we would think of as empty space is a teeming, fluctuating nothingness, with photons appearing from nowhere and vanishing almost as soon as they were born.” (Quoted in Reason in Revolt, p386)

Woods here correctly points to the curiously dialectical concept of the quantum fluctuations in the vacuum, and compares this with the dialectics of coming into being and passing away, as discussed by Engels in Anti-Dühring: “but everything moves, changes, comes into being and passes away.” (Anti-Dühring, p30)

The theory of quantum fluctuations has been a standard part of quantum mechanics (quantum field theory) for more than fifty years. Yet midway through Reason in Revolt, at the pinnacle of its mockery of modern science and the Big Bang, Woods devotes an entire section, Thoughts in a Vacuum, to ridiculing this very same idea. (p219) Woods’ contradictory positions suggest that he has not understood what he has written.

The interpenetration of opposites

Woods repeats in the abstract: “Everything that exists deserves to perish” but expresses his cosmology like this: “Time, space and motion are the mode of existence of matter, which can neither be created nor destroyed. The universe has existed for all time.” (p199) This is not the dialectical viewpoint of the ancient Greek philosophers from whom Hegel developed his dialectics. Woods is here defending Newtonian cosmology. Anaximander conceived that the universe had a beginning and an end but, as a materialist, he always assumed it emerged from some underlying substratum.

Ancient philosophers of the school of Thales and Anaximander were materialists and had a dialectical outlook. Anaximander said:

Whence things have their origin,

Thence also their destruction happens.

Anaximander

This means, according to Aristotle: “whatever comes into existence should have an end”. This is the origin of the quote from Johann Goethe’s Faust, which Engels uses and Woods fondly repeats a few times in Reason in Revolt: “Everything that exists deserves to perish” (p141), more correctly expressed as Engels renders it: “All that comes into being deserves to perish.”

Anaximander’s philosophy of coming into being and passing away reflected turbulent political times in the ancient city state of Miletus. Furthermore, these ‘opposites’ of coming into being and passing away, of birth and death, creation and destruction, were understood to interpenetrate everything, even our universe itself.

In other words, this ancient school of philosophers believed that the opposites of coming into being and passing away were two integral aspects of everything capable of change: for instance, a person is born and dies, and this mortality is a part of their being. This was the origin of the unity and interpenetration of opposites, which Engels summarised so clearly – and which Lenin, following Hegel, considered the central element of dialectics. These opposites, which dialectics says is found in everything which changes, attempt to negate the other, until one finally triumphs and there is a qualitative change – Louis XVI is guillotined, water boils, atoms decay, the living die. There is a passing away and, perhaps, another coming into being.This was called the dialectic of becoming.

Next: Aristotle on the ‘heavens’

Categories
Science and Marxism

What is infinity?

What does Woods mean by infinity? In the section, Does the Infinite Exist? Woods suggests that:

The idea of the infinite seems difficult to grasp, because, at first sight, it is beyond all human experience. (p353)

An infinite universe would indeed be “beyond all human experience”. As the physicist Brian Greene says: “Experimenters never measure an infinite amount of anything. Dials never spin round to infinity. Meters never reach infinity. Calculators never register infinity.” (The Fabric of the Cosmos,p335)

But this raises precisely the question we will address in this survey: how did the universe come to be reckoned to be infinite?

After all, science, which is instinctively materialist, bases itself on human experience (including, of course, through the use of scientific instruments of all kinds), not on what is “beyond all human experience”. This raises a second question: how can Woods’ claim that the universe is infinite be a materialist claim?

We can all envisage an unending series of numbers, a series of numbers that continually grows greater in an infinite repetition of some additional amount. No matter how large the number gets, we can always add one more. A simple repetitive task, we imagine, at least in principle, can always be repeated in an infinite process that need never stop. In this sense, we cannot agree with Woods’ claim that the infinite seems “difficult to grasp”.

But it is important to realise that this infinite process of addition or repetition will never reach actual infinity. The number of repetitions, however large, will be a finite number, and will remain finite.

This infinite process is not the kind of infinity that Woods is talking about. “Infinity, by its very nature cannot be counted or measured.” (p353) “The idea of infinity cannot begin with one, or any other number. Infinity is not a mathematical concept.” (p218)

Potential and actual infinity

So we begin to see that, contrary to Woods’ assumption, there are two contrasting concepts of infinity which may concern us here. (We will glance at George Cantor’s contribution to this subject later.) The first is the familiar one, which can, in fact, begin with one, or any other number, where we can always imagine adding one more in an infinite process.

Woods does not accept this, but this is what Aristotle, the Greek philosopher of the fourth century BCE, termed “potential” infinity. It is a process that never leaves the finite – you never reach infinity – yet, at any particular stage under consideration, it is an infinite process. It is the only type of infinity which science recognises (in the real world, as opposed to mathematical methods such as calculus). The dial never reaches infinity even if the process appears to be infinite.

In this way, as we shall see later, Engels at one point envisaged a universe rolling out indefinitely in time and space, in an infinite process comprised only of finites, and never becoming infinite (Anti-Dühring, Part V, p67). Elsewhere, Engels envisaged the death of the universe, pointing out that at a certain point all the stars must exhaust their fuels.

The second concept of infinity – the only one that Woods recognises – is “beyond all human experience”. Aristotle calls this second type of infinity “actual infinity”. Woods claims that the infinite is quite distinct from the finite. Yet Aristotle and many philosophers and scientists, through the ages to the present day, have explained that the ‘actual infinite’, the infinite that is “beyond all human experience” according to Woods, is an ideal with ‘potential’ but no ‘actual’ reality.

Engels’ views

Before we start our historical survey let us address directly the question: is the universe – or for that matter, the ‘multiverse’ – infinite?

Friedrich Engels (1820-1895)

We answer this question in the course of this discussion, but to jump ahead, it may be useful to take a glimpse at Engels’ remarkable insight on this question. We will argue that among these insights, guided by dialectical considerations, are some that approximate to the position of modern science today.

As we will show, Engels discusses the coming into being of our universe and says that there must have been a cause to this event even if, at present, we have no idea what it is. In today’s terminology, science assumes that there must be a cause to the Big Bang and is searching for it.

But if one was to ask whether there must be an infinity of previous causes to the cause of the Big Bang, at another point Engels replies: infinity is a contradiction, and is full of contradictions (Anti-Dühring, PartV, p66). Engels was well aware that Aristotle had shown that the actual infinite does not exist. It was common knowledge. It was also common knowledge that Aristotle discovered contradictions in the concept of actual infinity, and others, beginning with Galileo, have discovered many more. One such contradiction is called the infinite replication paradox, and simply follows from the fact that infinity can contain within it an infinite number of infinities.

Consider an infinity of people. With more than six billion people in the world, there are bound to be people who look very much like you. Famous people sometimes employ look-alikes to pretend to be them. Since antiquity it was understood that if the universe was infinite – a Newtonian universe or a multiverse of modern conception – there must be an infinite number of worlds (or universes) of every possible type, since even the most improbable worlds occur infinitely given an eternity of time and an infinity of space. Among them there will be an infinite number of worlds like ours, and even an infinite number of people like us living on these worlds – in fact, there must be an infinite number of people exactly like us, on these infinite worlds, doing exactly what you and I are doing right now.

As materialists, we must leave the actual infinite for what it is, a contradiction. As scientists emphasise, we have no material evidence for an infinite universe – just a sense that there must always be an endless chain of causes. Let us now place our discussion in its proper historical context.

Next: The dialectic of ‘becoming’ in ancient Greece

Categories
Science and Marxism

Concepts of the universe – an historical survey

One of the major themes running throughout Reason in Revolt is the infinite. Woods repeats many times, claiming the support of dialectical materialism, that the universe is infinite in space and time: “Dialectical materialism conceives of the universe as infinite.” (p189)

“From the standpoint of dialectical materialism,” Woods intones, it is “arrant nonsense” to talk about the beginning of time or the creation of matter:

Time, space and motion are the mode of existence of matter, which can neither be created nor destroyed. The universe has existed for all time (pp198-9)

Is it true that dialectical materialism conceives of the universe as infinite in time and space? Is it a materialist claim? Is it a dialectical claim?

The view that the universe is infinite in time and space may strike many people as a perfectly natural one. This concept has developed over the last five hundred years and should be understood in its historical development. It is a view that arises from definite historical and social conditions.

The Big Bang theory may well seem contrary to common sense to many readers. If we start from the very beginning – with the ancient Greek philosophers from whom so much has been learnt, even by modern scientists – we will find the answer to why science has taken this plunge into what appears on the surface to be an assertion that something can come out of ‘nothing’: that the universe – all its matter and energy, time and space – can emerge from the Big Bang. We will also discover the real material basis on which science establishes the origins of our universe, and the ancient dialectical concepts which proved so perceptive.

But first, a few remarks on what is meant by ‘universe’ and ‘infinity’.

One universe or many?

Firstly, what does Woods mean by the ‘universe’? When we say “the world” we may mean one of two things. We may mean the entire universe, or we may be referring to the earth. But what precisely do we mean by the ‘entire universe’?

No one imagined galaxies beyond our own, let alone universes, until a remarkable eighteenth century German philosopher suggested that there were other “island universes”.

Immanuel Kant (1724-1804), son of a German craftsman, introduced dialectics into modern philosophy

Immanuel Kant (1724-1804), son of a German craftsman, introduced dialectics into modern philosophy

This philosopher was Immanuel Kant, who was later to reintroduce the ancient Greek concept of dialectics into modern philosophy. In the late nineteenth century Engels enthusiastically praised Kant’s foresight and, in time, island universes were discovered by powerful telescopes, and termed ‘galaxies’. By the 1920s, the very great distances of some of these galaxies from our own galaxy had been measured.

After Einstein overturned Newtonian physics, especially with the advent of the Big Bang theory of the origins of the universe, it became possible to conceive of universes outside of our own, leading to various concepts of a multiverse or meta-universe – a set of universes which are speculated to arise in various ways. So now, when we say ‘the universe’ we may not mean everything that exists, but only ‘our universe’ as opposed to possible other universes. To most physicists the term ‘the universe’ tends to refer to our universe, the universe we can observe. The Astronomer Royal, Martin Rees, who adopts the term “our universe” in this way, writes:

What’s conventionally called ‘the universe’ could be just one member of an ensemble. Countless others may exist in which the laws [of physics] are different…

This new concept is, potentially, as drastic an enlargement of our cosmic perspective as the shift from pre-Copernican ideas to the realisation that the Earth is orbiting a typical star on the edge of the Milky Way, itself just one galaxy among countless others…

The big bang that triggered our entire universe is, in this grander perspective, an infinitesimal part of an elaborate structure that extends far beyond the range of any telescope. (Rees, Before the Beginning, Our universe and others, p3-4)

Our universe appears to have had a hot, dense origin popularly known as the Big Bang. It does not exclude the possibility of other universes beyond our own. Scientists speculate about a substratum, as we term it here, from which universes might naturally arise. For instance, some envisage universes budding off from a quantum substratum like bubbles budding off from foam. But in modern science neither our universe, nor a multiverse consisting of many universes, is compatible with the old Newtonian universe defended by Woods.

For many scientists today, one significant element of our universe is the special physical attributes of atomic particles and forces of which it is comprised: “The entire physical world,” says Rees, referring to our universe, “is essentially determined by a few basic ‘constants’: the masses of some so-called elementary particles, the strength of the forces – electric, nuclear and gravitational – that bind them together and govern their motions.” (Rees, Before the Beginning, p236)

But if these forces were only marginally different the universe that we know would be a physical impossibility. Yet we do not know whether these forces are the only possible combination of constants – maybe there are many other possible variations, producing many other types of universe, beyond our own, which are hardly conceivable to us today.

In our universe the known physical laws appear to apply universally, and the space, time, matter and energy of our universe are bound together. Scientists often use the term space-time, meaning, in a special sense, that time and space together can be treated as a single phenomenon. This discovery was based on Einstein’s theory of relatively, which also showed that mass and energy are linked. For instance, when an atomic bomb explodes a small amount of enriched uranium is converted into a massive amount of energy, a dreadful demonstration of the truth of Einstein’s theory.

In Newton’s universe, space and time have an absolute existence of their own, independent of each other and of matter. Einstein showed that if the mass of our universe exceeded a certain amount, the gravitational effect of all that mass would cause space-time to bend until the universe became ‘closed’ like a sphere (which has three dimensions), but in the four dimensions of space-time (which is not easily conceived by us). By closed, we roughly mean that anyone travelling in the universe in what appears to be a straight line could eventually find themselves back at their starting point, as if we were ants scurrying around the inside wall of a gigantic football.

Diagram: Space and time is bent around a massive object such as a star (shown by the dimple). To an observer from a distance, distances have been shortened, and time is also running a little slower.

Light (shown by the line) passing nearby is bent from the straight path indicated by the dashes.

We will discuss how Einstein revolutionised our concepts of time and space in the course of this survey. But to anticipate these arguments slightly, let us take a moment to consider what this remarkable concept means. A star, like our sun, bends space and time – something that has been routinely confirmed by observation since 1919.

Light travelling to earth from a star will be bent if it passes close to an intermediate star or galaxy. Space and time are bent by the great mass of this intermediate star or galaxy, and light passing through this bent space and time behaves just as if it was going though a gigantic lens. Today, this is routinely observed and quantified. It can give rise to gravitational lensing, an extremely useful tool in astronomy, in which a galaxy or other object in front of a distant object acts like a giant magnifying glass.

In the same way, the mass of all the stars in the universe collectively, together with other matter, have the effect of bending the space and time of the entire universe – and if there is enough mass, it could be bent right round back on itself in various ways. Current observations, however, suggest that there is not enough mass for this to happen.

We should point out that Woods calls this result of Einstein’s general theory of relativity a “regression to the mediaeval world outlook of a finite universe”, in a short passage particularly densely populated with false ideas. (pp382-3) But we should also point out that earlier in Reason in Revolt, Woods has already unintentionally endorsed the idea of space-time bending, not once but twice: “This was proved in 1919, when it was shown that light bends under the force of gravity.” (p106) Later, Woods presents both his viewpoints on the same page, first appearing to deny or at least denigrate Einstein’s theory and then going on to say that:

… [Einstein] predicted that a gravitational field would bend light rays… In 1919… Einstein’s brilliant theory was demonstrated in practice. (p154)

Woods seems to fail to grasp here that the 1919 experiment attempted to show that space – ‘empty space’ – is indeed distorted by the existence of a massive body and that the effect of gravity is a consequence of this distortion. Arthur Eddington’s famous 1919 observations, taken during an eclipse on the island of Principe off the West African coast, showed that light from a star that passed very close to the sun was indeed bent by the mass of the sun.

Eddington’s grand expedition was the first experimental test of Einstein’s general theory of relativity. His measurements were soon improved upon, and much more accurate measurements have confirmed his result – the confirmation of Einstein’s prediction that space and time is warped. Newton’s theory of gravity can also be used to suggest that light bends by a certain amount. But Einstein’s theory predicts that the gravitational effect on light should cause it to bend by roughly twice as much as predicted by Newtonian science – and light does, indeed, bend by the amount predicted by the general theory of relativity as it follows the curvature of space-time.

When scientists today speculate about other ‘island universes’ they may envisage universes governed by different laws which lie beyond the space-time of our universe and which, therefore, could not be measured in distances and times from our universe. Such universes might not be gravitationally attracted to one another or to the matter in our universe and may have none of the basic ‘constants’ as Rees calls them, of our universe – or even, some suggest, the same space-time dimensions. Science stands on the very first stepping-stone of a path to the possible discovery of other universes, in the same way that Kant anticipated a vast enlargement of our horizons when he speculated about other ‘island universes’. So the term ‘the universe’ today can either refer specifically to our universe or, more broadly, to our universe and anything that may lie beyond it. But Woods is defending the old Newtonian notion of an essentially unchanging universe comprised of infinite time and space with “galaxies and more galaxies stretching out to infinity”.

Next: What is infinity?

Categories
Science and Marxism

Science and dialectics in Reason in Revolt

Phase changes, or the transformation of quantity into quality and vice versa

Reason in Revolt first sets out to explain the laws of dialectics using modern scientific examples.

In the section, Quantity and Quality, Woods discusses the dialectical concept of the transformation of quantity into quality, which is exemplified, as we shall see, by the way heated water changes into steam. This is an important concept both for Marxists and also for scientists, who use the term ‘phase change’ or ‘phase transition’ for changes such as the transition from a liquid to a gaseous state.

In modern philosophy the concept was first fully developed by Hegel, who took it from the ancient Greeks.

Georg Wilhelm Freidrich Hegel (1770-1831)

Hegel used the example of water changing from a liquid to a gas in his Science of Logic and elsewhere. He showed how a constant addition of a quantity of heat to water leads to a ‘qualitative leap’ at boiling point. Above boiling point, water no longer has the ‘quality’ of being a liquid. Instead, it is a gas, a qualitatively different form of matter.

Criticising the maxim, ‘Nature does not make leaps’, Hegel wrote:

Again, water when its temperature is altered, does not merely get more or less hot but passes through from the liquid into either the solid or gaseous states; these states do not appear gradually; on the contrary, each new state appears as a leap, suddenly interrupting and checking the gradual succession of temperature changes at these points. (Science of Logic, p369)

Additional quantities of heat at boiling point do not lead (under normal circumstances) to a further increase in the temperature of the water, it leads to a qualitative change – water turns from a liquid into a gas. The same applies if the temperature of water is reduced:

Water, in cooling, does not gradually harden as if it thickened like porridge, gradually solidifying until it reaches the consistency of ice; it suddenly solidifies, all at once. It can remain quite fluid even at freezing point if it is standing undisturbed, and then a slight shock will bring it into the solid state. (Science of Logic, p370)

Hegel’s observations are scientifically accurate. Physicists call this type of change, when water changes from a liquid phase to a gaseous phase, a phase change. The fact that nature makes leaps from one form to another, such as from a liquid to a gas, is seen as an important concept in physics and cosmology today. Brian Greene explains how cosmologists today examine periods in the distant past when the rapidly expanding early cosmos itself underwent phase changes (for instance, speculation about a period of “inflation” in the early universe, which is thought to undergo phase changes). Greene himself uses the example of water changing into a gas. The concept of phase changes or transitions, Greene comments, “helped scientists make definite predictions that have been experimentally proved”. (The Fabric of the Cosmos, p268)

This process of change is summarised in materialist dialectics in the expression, “the transformation of quantity into quality and vice versa”. The addition of “vice versa” indicates that the reverse is true: a change of quality brings new characteristics which can be quantitatively measured. For instance, the qualitative change of water from a liquid to a gas brings about a gas which has a certain pressure and temperature which can be quantified.

In discussing the maxim, ‘Nature does not make leaps’ Hegel was also seeking a justification for leaps that take place in society – revolutions. Hegel is well aware that the French Revolution of 1789 was described as “unnatural” by detractors such as the ‘father of Conservatism’, Edmund Burke, who argued that unless change is gradual it will end in disaster because nature does not make leaps.

Woods also attempts some scientific observations while giving the same example of the phase changes of water. But unlike Hegel and Engels, his scientific knowledge is lacking. For instance, he states:

Until it reaches boiling point, the water keeps its volume. It remains water, because of the attraction of the molecules to one another. (Reason in Revolt, p49)

But water does not “keep its volume” and neither Hegel nor Engels suggest that it does. If a liquid is heated it expands and its volume increases: this is how a thermometer works. Further, it “remains water” even when it turns to a gas (water vapour or steam). And it does not remain liquid because of the “attraction of the molecules to one another” but because of atmospheric pressure. Lower the atmospheric pressure sufficiently and the water will boil without any addition of heat.

Woods then goes on to contradict himself, when he states that the volume between the atoms (strictly, molecules) increases in water which is heated which, of course, must mean an increase of the volume of the water as a whole. He then attempts to describe boiling at the molecular level. He writes:

However, the steady change in temperature has the effect of increasing the motion of the molecules. The volume between the atoms is gradually increased, to the point where the force of attraction is insufficient to hold the molecules together. (Reason in Revolt, p49)

But Woods has at this point described melting, a different process to boiling. In Dialectics of Nature, Engels discusses phase changes at the molecular level in great detail, but makes no such scientific errors (relative to his epoch, of course).

Melting takes place during the heating of a solid, such as ice, when the molecules become too energetic and the force of attraction of the bonds between them break, and the molecules flow freely in a liquid state. This is what Woods’ description resembles. In this way ice turns into water, which flows with little restriction from molecular bonds.

Boiling is quite different. It essentially takes place when, during heating, evaporating molecules become more and more numerous until, at boiling point, these molecules escaping from the surface of the water counteract the pressure of the air molecules on the surface of the water. At this point the water boils away, unrestricted by the atmospheric pressure. It is quite a different process. This is standard science which can be found in any textbook.

In Dialectics of Nature, Engels quotes Hegel on the phase change of water, and then goes on to give a very significant example:

Similarly, a definite minimum current strength is required to cause the platinum wire of an electric incandescent lamp to glow; every metal has its temperature of incandescence… (Dialectics of Nature, p87)

This particular type of leap in nature, the points at which metals glow at various specific stages of heating, (e.g. red hot, white hot, etc) was vexing the minds of the scientists of the time. They were looking for an equation which showed how gradual processes could lead to these sudden changes in colour, or different energy states. But none seemed to work. When at the turn of the 20th century Max Planck found a formula which satisfied experimental observation, the formula contained discrete leaps from one energy level to another. Planck termed the discrete packets of energy suggested by his formula “quanta”.

Had they been alive to witness it, Marx and Engels would have derived no small satisfaction at Planck’s discovery, not least because Hegel, discussing leaps in nature, quite coincidentally even used the same term. Any existing thing, Hegel wrote, “is essentially a relation of quanta”. This quanta may undergo “quantitative alteration”, Hegel continues, within a range in which it “does not change its quality”. But, “there enters a point in this quantitative alteration at which the quality is changed and the quantum shows itself … so that the altered quantitative relation is converted into … a new quality, a new something.” (Science of Logic, p367) Planck’s quanta marked the beginning of quantum mechanics, which takes for its basis that physical systems (such as atoms) leap from one discrete energy state to another.

Electrons and protons

In another discussion of dialectics in the section, The Unity and Interpenetration of Opposites, Woods aptly uses the atom as an example of how opposites interact with each other.

In an atom, electrons swarm round a nucleus composed of protons and neutrons. But the electrons carry the opposite charge to the protons, and this way, among many others, all physical things made of atoms are comprised of, or are “interpenetrated” by, opposites. Woods quotes Richard Feynman, the US physicist, who said “All things, even ourselves, are made of fine-grained, enormously strongly reacting plus and minus parts, all neatly balanced out.” (Feynman quoted in Reason in Revolt,p64)

The opposite charges are united in the atom. In capitalist society, the ‘opposites’ of the exploiting boss and exploited worker are also bound together and mutually dependent in the production process. Opposing classes are united (in a geographical sense) in each capitalist county. They are a unity of opposing forces in this sense. But these opposing forces will lead, under the right conditions, to an explosion.

After reading Hegel’s Science of Logic, Lenin regarded this concept of a unity of opposites as central to dialectics. Lenin quotes Hegel, who said that the understanding of “opposites in their unity” is “the most important aspect of dialectic”. (Science of Logic, p56) We will discuss the origins of this concept in ancient Greece shortly, where it can be traced to the Ionian philosophy of ‘coming into being’ and ‘passing away’, and we will meet it again when we discuss the nature of modern science.

But Woods’ science is weak. Pointing out that the electron has a negative charge and the proton a positive charge, Woods begins by asking:

Why do the contradictory forces of electrons and protons not cancel each other out? Why do atoms not merely fly apart? The current explanation refers to the “strong force” which holds atoms together. (p64)

But the contradictory ‘forces’ of electrons and protons do cancel each other out, in the sense that the atom becomes neutrally charged if it has the same number of electrons and protons.

The striking thing is not that electrons and protons do not ‘cancel each other out’ but that they do. The proton has 1836 times the mass of the electron, but exactly the same size charge, only positive rather than negative. The question ‘why do atoms not fly apart’ seems like an odd question to ask. After all, the positive and negative charges of the electron and proton attract each other. And what puzzled scientists before the development of the science of quantum mechanics was why the electron did not spiral into the atom’s nucleus. The strong force, incidentally, does not hold the electrons and protons together as Woods appears, perhaps unintentionally, to state (elsewhere he gets this right), the electrical force does.

Woods gives a number of examples of opposites, but then concludes with a rather sweeping statement:

There are two kinds of matter, which can be called positive and negative. Like kinds repel and unlike attracts. (p65)

This curious statement (two kinds of matter?) is reminiscent of the outlook of the German idealist philosopher Friedrich Schelling at the turn of the 19th Century. Schelling used the example of the north and south poles of the magnet as a metaphor for the world and its contents, to suggest that change in nature expresses itself through a duality of polar opposites, a philosophy that was very influential for a period. In this way, Schelling, for a period a close friend of Hegel, contributed to the development of the dialectic of the interpenetration of opposites, which Hegel developed further.

But Woods’ statement reduces the complexity of the universe and its contents to a very crude formulation. What of gravity, of the neutron, of quarks and neutrinos and those sub-atomic particles which appear to come in sets of threes in various ways? The dialectic of the interpenetration of opposites is a tool which in various ways can undoubtedly aid the comprehension of nature and society, but it is reduced to an absurdity in such sweeping pseudo-scientific statements which can lead to objections or even ridicule from the scientifically minded.

Everything flows

The first passage on modern science in Reason in Revolt comes at the beginning of the section, Everything Flows. Woods claims:

Particles are constantly changing into their opposite, so that it is impossible even to assert their identity at any given moment. Neutrons change into protons, and protons into neutrons in a ceaseless exchange of identity. (p45)

There is no truth in this. A neutron that has escaped from an atomic nucleus will decay after about twelve minutes into three particles: a proton, an electron and a neutrino, but this process is quite different to the “ceaseless exchange” pictured here. Later, Woods says that the famous German physicist Werner Heisenberg’s exchange force “implied” this supposed “ceaseless exchange” of identity between protons and neutrons. (p96) It does not. The exchange forcedeals with exchanges between identicalparticles, not different ones, which would lead to a violation of the law of conservation of charge. It is a well-understood phenomenon.

Although dialectics certainly suggests that science will find a time limit beyond which protons will decay in some way, and teams of scientists are testing to find that limit – nevertheless the proton is stable over very long periods. A twelve-year experiment, started in 1989, suggested that the proton has a lifetime of at least ten million billion billion billion years (1034 years – 1 followed by 34 zeros). It does not ceaselessly change, as Woods asserts.

Woods’ aim is to suggest that nature is not immutable but that change penetrates down to the most fundamental particles. In many ways this is true, if one avoids sweeping statements. But what Woods applies to the smallest particles he will not apply on the largest scale. Engels showed that in the Newtonian conception of the universe, “nature was obviously in constant motion, but this motion appeared as an incessant repetition of the same processes”, and thus nature was seen as essentially immutable. Kant, says Engels, changed all that. (Anti-Dühring, p73) Yet, surely, when Woods concludes his discussion of cosmology and modern physics, he retreats to the point of view of this same “incessant repetition of the same processes”. He writes: “All individuals must perish, but the wonderful diversity of the material universe in all its myriad manifestations is eternal and indestructible. Life arises, passes away, and arises again and again. Thus it has been. Thus it will ever be.” (p225)


A fundamental law of dialectics: truth is concrete

Woods is no scientist – he has no grounding in science at all. Explaining the energy contained in a gram of mass, Woods gives the answer measured in ergs, an obsolete unit of energy universally replaced by the Joulein 1960. Science has accumulated many observations and has considerably changed in the near half-century since 1960 – some theories considered by scientists to be highly speculative in 1960 are now robustly proven, while others have long since been abandoned.

Woods approaches science as a philosopher of dialectical materialism. He claims that Reason in Revolt has had a “tremendous success internationally”. But ithas had no impact whatsoever on science, undoubtedly for the reasons shown above.

Many readers of Reason in Revolt were no doubt attracted by the promise of an exposition of the philosophy of dialectical materialism and its relationship to science, or the development of an understanding of the world we live in – for instance, whether our universe has a definite origin in time and space, or is infinite. We will shortly discuss what the proponents of dialectics, from ancient Greece to modern times, said about these ideas, and discuss the relationship of these ideas to the development of science. It is indeed a fascinating subject.

But by disregarding the need for a thorough understanding of science – as if philosophy can substitute for a detailed understanding of the matter being studied – Woods does an immediate disservice to dialectics and, thereby, to Marxism. Woods forgets that Hegel himself sets out, from the outset, an important law: truth is concrete.

At the start of his Encyclopaedia, for example, Hegel says:

Everybody allows that to know any other science you must have first studied it, and that you can only claim to express a judgement upon it in virtue of such knowledge. Everybody allows that to make a shoe you must have learned and practised the craft of the shoemaker, though every man has a model in his own foot, and possesses in his hands the natural endowments for the operations required. For philosophy alone, it seems to be imagined, such study, care, and application are not in the least requisite. (Hegel Encyclopaedia, paragraph 5)

Nikolai Chernyshevsky said Hegel’s dialectical method insists that:

Every object, every phenomenon has its own significance, and it must be judged according to the circumstances, the environment, in which it exists. This rule was expressed by the formula: ‘there is no abstract truth; truth is concrete.’(Chernyshevsky, quoted by Georgi Plekhanov in The Development of the Monist View of History, pp103-4)

Woods should be left in no doubt whatsoever about the importance of this principle of dialectics. Lenin echoes Chernyshevsky: “One of the basic principles of dialectics is that there is no such thing as abstract truth, truth is always concrete.” (One Step Forward, Two Steps Back, last chapter)

Leon Trotsky says this about dialectics and science:

Dialectics and materialism are the basic elements in the Marxist cognition of the world. But this does not mean at all that they can be applied to any sphere of knowledge, like an ever-ready master key. Dialectics cannot be imposed upon facts; it has to be deduced from facts, from their nature and development… You will get nowhere with sweeping criticisms or bald commands. (Problems of Everyday Life, p 288)

How can Woods construct a dialectical criticism of modern science when he does not understand how water boils? And how will he fare with Einstein’s theory of relativity? We will come to this later.

Next: Concepts of the universe – an historical survey

Categories
Science and Marxism

 Introduction

Einstein was determined to re-write the laws of physics… From the standpoint of relativity, steady motion on a straight line is indistinguishable from being at rest.

Woods and Grant, Reason in Revolt, 1995

First Law of Motion: Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.

Isaac Newton, Principia, 1687

Reason in Revolt, Marxist Philosophy and Modern Science, written by Ted Grant and Alan Woods (hereafter abbreviated to Woods), attempts a Marxist critique of science.

A Marxist critique of science is a laudable project. But such a critique requires not only an understanding of Marxist theory, but also a thorough comprehension of scientific theories and their historical development. Marxism does not provide a ready-made key for making judgements about scientific ideas. It cannot substitute for a detailed knowledge of the appropriate scientific material. Unfortunately, Woods’ analysis, as we will shortly show, reveals a poor understanding of the science he seeks to elucidate.

The past century has seen a transformation of the world through scientific development, whether for good or bad. There has also been a transformation of science itself, many times over, since Karl Marx and Friedrich Engels began the development of what they termed ‘scientific socialism’, which came to be known as Marxism. Marx and Engels often exchanged correspondence about scientific matters and they were close friends with Carl Schorlemmer, a member of the Royal Society, the UK’s national academy of science, who advised them on the latest advances in chemistry.

Engels highlighted the role of scientists in human history. The “immortal work” of Nicolaus Copernicus showed that the earth revolved around the sun. Engels describes its publication as a “revolutionary act”. Copernicus “shows theology the door” at the dawn of the Enlightenment, but Isaac Newton closes the period with his “divine first impulse”. (Dialectics of Nature, Introduction) Engels endorses Immanuel Kant’s realisation, at that time unproven, that all “celestial bodies” originated from swirling clouds of gas. Engels calls this conception, “the greatest advance made by astronomy since Copernicus.” For the first time, Engels comments, “the conception that nature had no history in time began to be shaken. Until then the celestial bodies were believed to have been always, from the very beginning, in the same states.” (Anti-Dühring, p72)

Marx and Engels particularly admired Charles Darwin, a revolutionary, iconoclastic scientist in his own modest and hesitant way. Darwin showed how species developed and changed, discovering the secret of life’s evolution on our planet. Engels emphasises that “nature does not just exist, but comes into being and passes away.”

One of the cornerstones of scientific socialism is usually termed ‘dialectical materialism’, (see the next chapter) although Marx and Engels never used the term themselves. Marx and Engels took the dialectical method of the German philosopher Georg Wilhelm Friedrich Hegel and used it as a tool to understand the historical development of human society, once they had placed his philosophical method on a materialist basis.

In the last century, Marxists debated the revolutionary work of Albert Einstein and latterly of the Big Bang theory of the universe, with its origins in the observations of Edwin Hubble. Einstein’s theory of relativity and the Big Bang theory combined to overturn almost every last remnant of the old Newtonian science, which was saturated with the belief in the “absolute immutability of nature”, as Engels emphasises. It is these two revolutionary theories, the theory of relativity and the Big Bang, with which the first half of Reason in Revolt (first published in 1995) is chiefly concerned.

For this reason our study of the relationship between Marxism and science will focus on the historical development of cosmology and in particular the contribution of Einstein and the Big Bang. We know that our universe exists, but did it come into being and will it pass away?

                                                *          *          *

“Einstein was determined to re-write the laws of physics,” writes Woods. “From the standpoint of relativity, steady motion on a straight line is indistinguishable from being at rest.” (p161) 

This might sound a very odd claim and Woods disputes it. How can motion be indistinguishable from rest? But consider this. If it were not true, you would, this very minute, while sitting reading this page — be experiencing the sensation of the earth travelling around the sun! 

You feel at rest. The ground you are on appears to be at rest. But yet you are in very rapid motion — at around 107,000 kilometers per hour! (67,000 mph).

No wonder the flat-earther’s can’t believe it is true. But should Alan join them? In fact, in relation to this concept in science, in Reason and Revolt, he does.

We will later show that it was Galileo Galilei, the 16th century astronomer, not Einstein, who explained, in his famous Dialogue Concerning the Two Chief World Systems, that steady motion in a straight line is indistinguishable from being at rest, giving examples, such as being below decks on a boat in calm waters, and not being able to tell, from any experiment you might do, if it is moving or not. He was justifying the view that the earth moved round the sun despite the fact that we appear to be at rest.

Sadly, Woods does not side with Galileo on this question, (and neither did the Inquisition). On the contrary, as we will later see, Woods argues that extreme velocity “can cause material damage to living organisms.” (p. 165) The opponents of Galileo also argued that the earth could not possibly be in such “violent” motion. They opposed the notion that the earth was a spinning globe, going round the sun. In very simple terms, they were flat earthers.

Newton took Galileo’s insights (strictly, his discovery of inertia) and formulated them into his First Law of Motion: “Every body perseveres in its state of rest, or of uniform motion in a [straight] line” unless (and this is his new addition) a force is applied. Rest and steady motion are treated as equivalent. We explain this in more detail in the section on Galileo.

And what did Einstein add? Nothing. Ironically, this is the one classical law of mechanics which Einstein does not revise. Instead, at the opening of his famous 1905 paper which introduced Relativity, he raised Galileo’s insight to what he terms a “principle of relativity” – and the name stuck. His theory became known as the Theory of Relativity.

    *       *        *

After discussing dialectics, Woods moves on to Einstein’s theory of relativity, the Big Bang theory, the origin of life, of mind and matter, and other universal matters. Reason in Revolt attempts to discuss ‘life, the universe and everything’. The jacket cover asks whether this “encounter” between Marxist philosophy and science will “provide the basis for a new and exciting breakthrough in the methodology of science?”

Reason in Revolt claims: “Dialectical materialism conceives of the universe as infinite.” (p 189) We will attempt to refute this claim. Viewed historically, it was Newton who argued that god is infinite and that therefore space and time must be infinite. Newton was also concerned that his ‘universal gravitation’ should have caused all the stars in the universe to have attracted each other – they should have all fallen into “one great spherical mass”. Newton’s solution was to summon the hand of god to set an infinite universe in perfect balance.

Newton’s infinite universe, as embraced by Woods, is essentially a product of religious ideology. The physicist Brian Greene says: “Experimenters never measure an infinite amount of anything. Dials never spin round to infinity.” (The Fabric of the Cosmos, p335) Infinity is a key concept in the history of philosophy and science, and anyone serious about the subject must be clear on the issues involved. This is no quibble over terminology but a crucial discussion of ideas.

As explained in the following pages, in the fourth century BCE, (BCE – “Before the common Era”, a secular alternative term for BC, “Before Christ”) the ancient Greek philosopher Aristotle described what he called ‘potential infinity’. This is the recognition that, in a potentially infinite process, the largest number you can possibly think of can always be increased by adding more numbers, without ever reaching infinity. Aristotle distinguished this potential infinity with what he perhaps misleadingly called ‘actual infinity’. Aristotle pointed out that a potentially infinite
series of numbers never reaches actual infinity and, in fact, never leaves
the finite. The ‘actual’ infinite, Aristotle argued, does not exist. To put this another way, it is wrong to believe that there exists an actual, realisable infinity.

Despite his references to Aristotle, Woods makes no direct mention of this seminal and essentially materialist position. Of course, the study of the concept of infinity has developed over the millennia. But as the physicist Lee Smolin recently wrote, in nature, “we have yet to encounter anything measurable that has an infinite value”. Infinities which occur in scientific theories are not likely to be reflecting natural phenomena but errors or limits within the theory itself. Infinites in scientific theories are most likely to be “the way that nature punishes impudent theorists”. (Smolin, The Trouble with Physics, p5)

Woods takes the opposite view. The universe, he repeats, “as Nicolas of Cusa and others thought, is infinite” (p184) and, “The universe has existed for all time.” (p199) Woods claims support from Hegel and Engels but we will show that Woods has turned some of their central views upside down.

Einstein’s elegant general theory of relativity, published in 1916, solved the mysterious ‘action at a distance’ of gravity which so puzzled Newton. Einstein showed that gravity and motion are “intimately related to each other and to the geometry of space and time”. (Smolin, The Trouble with Physics, p4) In 1929, Hubble famously discovered that the universe was rapidly expanding. This strongly inferred that the universe had issued from a hot, dense origin and this expansion presented a real solution to Einstein’s equations.

In this way, twentieth century science removed from cosmology the paradoxes arising from Newtonian notions of infinite time and space. It removed the need for the “divine first impulse”. Far from leading to ‘creationism’, once very tangible evidence of the Big Bang arrived in the form of the discovery of cosmic background radiation, science soon began investigating what we here term the material ‘substratum’ from which the universe emerged in the Big Bang.

Of course, these new discoveries have not eliminated contradictions from science – there is always a dialectical interplay between theory and data. Our understanding of the universe will continue to advance and change. As we write, particle physicists are nervously awaiting the first results from the Large Hadron Collider, the latest and most powerful particle collider, now expected to be operational in early 2008. Many guess the findings will cause upsets and pose new challenges to the current attempts to unify quantum mechanics and Einstein’s general relativity – one of the great unsolved problems of physics.

Yet Woods scorns Einstein’s general relativity. He describes it as producing a “regression to a mediaeval world outlook”. (p.383) Yet, to take one example, the pinpoint accuracy of GPS (Global Positioning System) navigation is achieved by continually recalculating the satellite data using Einstein’s equations. Without Einstein’s theory, GPS navigation would be less accurate by tens of metres. Woods desires to defend the “fundamental ideas” of Marxism by endorsing the basic outlook of the Newtonian universe – in the name of dialectical materialism, moreover. Woods says science has been set back “400 years”, yet he wishes to set the clock back to the publication of Newton’s Principia in 1687 (with the exception of his first law).

                                                *          *          *

Woods neither properly represents nor understands the last century of discoveries that have so completely changed the scientific conception of the universe. He misunderstands both dialectical materialism and its approach to science. In his obituary to Ted Grant, Woods claims that Reason in Revolt defends “the fundamental ideas of the movement”. This review argues that, on the contrary, Reason in Revolt misrepresents the fundamental ideas of the movement. Grant, who died in July 2006, undoubtedly contributed much to Marxist thought, but he was not a scientist. With the appearance in the summer of 2007 of a second English edition of Reason in Revolt we felt it necessary to attempt to set things to rights. (Page references are to the first edition.) We wish, in the course of this discussion, to defend the genuine ideas of Marxism and suggest that Marxism takes quite a different approach to modern science.

In addition to our scientific survey of the last few centuries of revolutions in cosmology, we will argue that Engels was essentially antagonistic to the idea that our universe is infinite. Almost a hundred years before the Big Bang theory was accepted, Engels discussed both the birth and the death of our universe. We find no mention of this in Reason in Revolt. Woods confidently predicts that the infinite universe contains only “galaxies and more galaxies stretching out to infinity”. (Preface to the 2001 Spanish edition of Reason in Revolt). But Engels refers the reader to Hegel who says that such predictions are merely a “tedious” repetition of known phenomena (in this case galaxies), which never leaves the finite. Support for an infinite universe in this form is a failure of imagination, rather than its triumph.

For two-and-a-half millennia, many philosophers have supported Aristotle’s view that infinity is a concept which has no “actual” existence. Hegel arrived at a dialectical proposition which can be expressed like this: you can always imagine an unending series of galaxies following one after another, but in concrete reality, at a certain point, quantity turns into quality and a new phenomenon emerges. Whatever existed before is negated. From this point of view there may be many galaxies undiscovered, or many universes beyond our own – it is speculation – but at some point, some other property will arise that ends the tedious repetition, whether of galaxies or universes, the conception of which is beyond our current scientific horizons.

A comment on the preface to the second English edition of Reason in Revolt

In May 2007, the publication of a second English edition of Reason in Revolt was announced. In the Preface to the new edition, Woods tells us that when Ted Grant and he were writing Reason in Revolt in 1995:

… we were still unsure about the existence of black holes. (Preface to the second edition of Reason in Revolt)

Ted Grant was contemptuous of the science of black holes. While Reason in Revolt takes a more equivocal stance in part, Woods was certain, in 1995, that the modern physics of the black hole was quite wrong. Woods says:

Singularities, black holes where time stands still, multiverses…These senseless and arbitrary speculations are the best proof that the theoretical framework of modern physics is in need of a complete overhaul. (Reason in Revolt, p174)

Now Woods appears to unreservedly embrace the science of “black holes where time stands still”. In the 2007 preface to the second edition he states:

They are present at the centre of every galaxy and serve to hold galaxies together, giving them the cohesion without which life, and ourselves, would be impossible. Thus, what appeared to be the most destructive force in the universe turns out to have colossal creative powers. The dialectical conception of the unity of opposites thus received powerful confirmation from a most unexpected source! (Preface to the second English edition of Reason in Revolt)

There is a lot that is simply false here. In fact, at the time of writing, black holes are not proven. They “remain largely theoretical” and even problematic, as the New Scientist pointed out in its recent cover story, ‘The Truth About Black Holes’. (6 October 2007) Woods’ original scathing condemnation of the modern science of black holes has been replaced by a contrary position which just as surely misrepresents modern science. Black holes are not by any means known to be – or even generally regarded to be – at the centre of “every” galaxy. Black holes are thought to be at the centre of a certain type of galaxy (including our own), at least in most cases, according to a study which Woods came across and misreports in the preface to the 2001 Spanish edition of Reason in Revolt. They do not hold galaxies together.

Reason in Revolt reaches the pinnacle of its ridicule of modern science in its condemnation of the modern science of black holes and the Big Bang theory. Yet there is no direct mention of this in the 2007 preface. Instead, Woods comments on the correct method by which to apply dialectical materialism. Woods quotes Engels, who criticises the idealism of Hegel. Engels says:

The mistake lies in the fact that [the laws of dialectics] are foisted on nature and history as laws of thought, and not deduced from them. (Dialectics of Nature, Chapter 2)

Does not Woods make the same type of mistake? In Reason in Revolt we read, “Dialectical materialism conceives of the universe as infinite.” (p189) In our critique we ask – on what material basis is this assertion made? Does not Woods attempt to foist on cosmology what he believes are the laws of dialectical materialism? Reviewing, with complete incomprehension, the modern science of the Big Bang in relation to Einstein’s general theory of relativity, Woods cries, “Here the study of philosophy becomes indispensable.” (p216)

Reason in Revolt tells us that science has regressed to:

…the world of the Creation Myth (the “Big bang”), complete with its inseparable companion, the Day of the final Judgement (the “big crunch”). (Reason in Revolt p183)

Yet only seven years later, in the 2002 USA edition of Reason in Revolt, Woods offers his support to a mainstream re-working of the old speculatively infinite cyclical Big Bang theory, complete with its infinite Big Bangs and Big Crunches.

If Woods had intended to present an honest reappraisal of his book, he should have clearly acknowledged the errors within it.

Next: Science and dialectics in Reason in Revolt


This introduction was revised for the 2022 WordPress Marxist.net edition.

Categories
Science and Marxism

Preface to the 4th edition

December 2024

Lynn Walsh, the editor of this book, passed away this year, aged 79.

Lynn was, in fact, more than the editor of this book. Lynn had a strikingly profound understanding of science and dialectics and his influence on the ideas expressed in this book cannot be understated.

Lynn was never a rigid or dogmatic thinker. He excoriated my early naive view that science simply develops according to discovered ‘facts’. No, he told me, the progress of science could only be understood through the Marxist, historical materialist method. Each new discovery is viewed through the distorting prism of the discoveries of previous generations and usually interpreted according to the dominant concepts, the preconceptions of the epoch, whether knowingly or unknowingly.[1]

Results that defy our comprehension are generally pushed into a known formulation, even when the data militates against it. There is a formidable push back against revolutionary new ideas. Such a revolutionary new idea was the Big bang theory.

The Big bang

That discussion took place in 1992. It was formative for me. The result was Ripples in the Universe published in Militant International Review, (now Socialism Today) under Lynn’s editorship, in Autumn 1992 – my first attempt, in collaboration with Lynn, to discuss the Big Bang origins of the universe, after big news had hit the headlines.[2]

As we shall see in this book, the Big Bang theory was a dynamic alternative theory to the then widely accepted view, dating back to Issac Newton, that stars and galaxies simply spread out over an infinity of space, and always had since the moment Newton’s God created the world an infinity of time ago.[3] The Big Bang proposes that the observed expansion of space, if run backwards, points conclusively to a very small, highly dense origin which explosively expanded in a “Big Bang”, some 13.8 billion years ago, to become the universe we now see.

In April 1992, NASA, the US National Aeronautics and Space Administration, had just announced the first results from a satellite called Cobe, which made very precise measurements of the radiation that cosmologists interpret as a relic of the initial Big Bang. I was excited to get a discussion going within the forerunner of the Socialist Party, then called Militant Labour, about this revolutionary new cosmological concept.

NASA had provided the first evidence which met the criterion of precision that scientists strove for – it was the ‘smoking gun’ evidence of the Big Bang. The Times quoted a very excited Steven Hawking, the world renowned cosmologist, claiming that this was the “discovery of the century, if not of all time.” [4] Possibly a slight exaggeration! The discovery was a turning point for the theory, bringing it wider acceptance in the scientific community, if not the general population.

The philosophy of Dialectics

The Big bang was a veritable revolution not just in physics, but our entire perception of our place in the universe. The universe was now no longer a fixed, unchanging  thing, infinite in space and time. There was no longer a justification for the unimaginative duplication of the stars we see through telescopes, projected back into the past, forward into the future and through an assumed infinity of space. Instead, a there was a violent beginning in the past and a slow extinction in the distant but measurable future.

In the 1990s, it was hard to swallow. It was met with incomprehension and ridicule. Even the very term “Big Bang” was coined to mock the ideas. Its adherents adopted the name. But the Big Bang could be understood more easily through the guidance of the method of Marxism.

Lynn also had a profound view of the Marxist philosophy of dialectics. Once, when I attempted to begin a discussion on Engels’ well-known three laws of dialectics, discussed in this book, Lynn astonished me: “Lenin described 16 ‘laws’, not three”. They were not laws in the sense of fixed, scientific laws, he explained. They are a guide to understanding. This book attempts to show how these ‘laws’ can be easily understood when properly presented.

Lenin also states, after enumerating his 16 “laws”, that dialectics can be summed up as the doctrine of the unity of opposites but immediately adds: “but it requires explanations and development”.[5] Engels called this same concept the “interpenetration of opposites” which appears at first sight to be an equally obscure – if not a rather more frightening – expression.

Opposites in Science

And yet, when we consider the matter, we do indeed find opposites in anything large or small (any “unity”) which can undergo change. Atoms (the “unity”) contain electrons and protons which carry opposite charges. That apparently harmonious workplace you work in, is actually a seething battle over wages, conditions, and any number of other things. That country you live in, which looks so peaceful taken as a whole, contains a working class which produces the wealth, which is brutally exploited by the capitalist class, which in turn owns the wealth produced. A revolutionary change is slowing boiling up.

This is the sense, in Lynn’s view, in which the word “opposites” is meant to be understood within anything under consideration. A body of any kind, which might on the surface look like a harmonious whole – a happy workplace! – has within it contradictory elements. This view is developed in this book, especially in relation to the development of science and the Big Bang theory in particular.

Lynn explained how science is just such a ‘unity’ of interpenetrating ‘opposites’. Despite reaching a consensus viewpoint on topics, science thrives in a world of opposing theories, always challenging the status quo. In this turmoil, from time to time, the old ‘unity’ – the consensus view – bursts asunder in a revolution of new higher level of understanding, as old theories are overturned by opposing ones. Quantity turns to quality. The Big Bang was such a revolution.

The results of more than a decade of discussion and investigation with Lynn form the book, ‘Science, Marxism and the Big Bang’, which Lynn not only guided and edited, but even provided the opening paragraph, which, typical of his thinking, warns against dogmatism: “Marxism does not provide a ready-made key for making judgements about scientific ideas. It cannot substitute for a detailed knowledge of the appropriate scientific material.” But what the dialectics of Marxism does do, is provide a framework for understanding what science is and how it operates.

Epoch making events

As I write (December 2024), the South Korean working class have faced down an announcement by the President that he is imposing martial law. They declared a general strike within hours of the announcement. This sudden explosion of militancy, which is powerful because an all-out general strike threatens the very existence of capitalism, shows that under the surface of what the President may have thought was a peaceful, harmonious society, was a seething anger against the political elite, a society where the opposites of the ruling capitalist class and the working class are in a constant battle, although it takes many forms, often hidden from view and disguised within pure;y political struggles.

It would be wrong to give the impression that Lynn Walsh was mainly focused on philosophy and science. On the contrary, he was a leading force in the development of first the Militant tendency and then the Socialist Party , and the international organization, the Committee for a Workers International or CWI for short, to which they are affiliated.


(See https://www.socialistworld.net/.) He travelled the world, visiting countries that were in revolutionary turmoil, from the 1974 revolution in Portugal to the collapsing USSR. International events like those in South Korea now were his bread and butter.

Lynn was an important contributor to the major debates we had nationally and internationally. He propounded, in many articles and documents, during debates within our party, the revolutionary new ideas that the party was developing. These included debates around such epoch-making events as the collapse of the Soviet Union in the 1989-1992 period, and the final collapse of the UK’s Labour party, and any number of other so-called ‘Left’ parties around the world, into the malicious embrace of the capitalist class, at around the same time, which required of socialists a complete reorientation.

In these latter two debates in particular, opposition arose from the very same figures against whom we argue in Science, Marxism and the Big Bang. The website marxist.net has placed those historical documents on its archives.

As the millennium turned, Lynn increasingly focused on the financial tools the capitalist class were using to leverage a speculative boom. His articles in Socialism Today predicted the worldwide financial collapse – the 2007–2008 global financial crisis which was the most severe worldwide economic crisis since the 1929 Wall Street crash. [6]

A careful examination of articles published in the run up to this event will demonstrate that no other party on the so-called left, or the far left, anticipated this world-shaking event. Instead, they bought into the capitalist propaganda. The Socialist Party stood alone in its warnings, while capitalist commentators and economists were almost unanimous in announcing that an increasingly unregulated free-market capitalism, unhindered by state intervention, no longer frightened by the collapsed Soviet Union, had ushered in a new world order which would be the ‘end of history’. Then the wheels fell off.

Lynn Walsh’s insights into the workings of the world were many and various. May he rest in peace.

*   *   *

This edition has expanded and refined explanations of the historical development of scientific ideas here and there, but I’ve left the modern scientific statements unaltered. Undoubtedly, as this book itself asserts, new interpretations of data and new revelations will continue. The way that the universe as a whole is variously described in popular scientific discourse has continued to develop. But the ‘ four pillars’ of the Big Bang theory[7] defended in this book, remain robust.

It has been almost 20 years since this short book came out. There has never been a refutation issued by our adversaries. Supporters of Alan Woods sometimes say that while the facts in Reason in Revolt, the book which Science, Marxism and the Big Bang takes issue with, may be mistaken, the method he outlines is correct. This book shows that the method is in fact wrong. Indeed, one might pause to wonder how a method can be correct if its application leads to errors almost on every page, some, as the introduction shows, quite fundamental.

How did the method of Marxism, which finds the revolutionary core in the seemingly passive exterior of all things, lead Woods to dismiss the revolutionary new theory of the Big Bang and endorse the centuries-old existing Newtonian theory, based on his belief in an infinite God? Only if that method was turned on its head, into its opposite. Reason in Revolt places human reasoning, or philosophical insights, above any serious consideration of the data. It is the opposite of a materialist approach.

So let us repeat Lynn’s warning once again: Marxism does not provide a ready-made key for making judgements about scientific ideas. It cannot substitute for a detailed knowledge of the appropriate scientific material. As Lynn taught me decades ago, Lenin ridiculed attempts by his comrades to make a “Marxist” judgement of scientific ideas. Lenin called it “Communist swagger”.[8]


[1] This is discussed in detail in the final chapter.

[2] Science Forum: Ripples in the Universe, by Pete Mason, Militant International Review, Autumn 1992, issue 49, pp. 26-29

[3] Newton argues for infinite space thus: “Since every particle of space is always, and every indivisible moment of duration is every where, certainly the Maker and Lord of all things cannot be never and no where.” (Newton, Principia, book three, General Scholium, p1,158). See section on Newton in this book.

[4] Nigel Hawkes, ‘Hunt On for Dark Secret of Universe’, London Times, 25 April, 1992

[5] Vladimir Ilyich Lenin, Summary of Dialectics, 1914, Lenin’s Collected Works, 2nd English Edition, Progress Publishers, Moscow, 1965, Volume 38, pp. 220-222

[6] See ‘Capitalism Unleashed’, Lynn Walsh, Socialism Today, November 2006;  ‘Is the US Economy heading for recession?’ Lynn Walsh, Socialism Today, December 2006; ‘Forever blowing bubbles? What is happening to the world economy?’ Lynn Walsh, Socialism Today, May 2007; and an overview: ‘10 years since the financial crash – the socialist answer to capitalist crisis’, Steve Score, The Socialist, 12/09/2018

[7] See the chapter, The Big Bang and mysticism in science

[8] Trotsky, Problems of Everyday Life, p274. See Chapter: ‘The dialectic of the unity and interpenetration of opposites in science’ in this book for a discussion of this.

Categories
Science and Marxism

Science, Marxism and the Big Bang: a Critical Review of Reason in Revolt


A contribution to a debate on Marxism and science

By Peter Mason


Contents:

  1. Contents and Preface to the 3rd Edition (This page)
  2. Preface to the 4th edition
  3. Introduction
  4. Science and dialectics in Reason in Revolt
  5. Concepts of the universe – an historical survey
  6. What is infinity?
  7. The dialectic of ‘becoming’ in ancient Greece
  8. Aristotle on the ‘heavens’
  9. Galileo and the relativity of space
  10. Newton: belief and contradiction
  11. Kant’s cosmology and Engels’ commentary
  12. Hegel on the dialectics of infinity
  13. Engels on materialism, the infinite and cosmology
  14. The infinite in mathematics
  15. Einstein and the end of Newtonian absolute space and time
  16. The Big Bang and mysticism in science
  17. The dialectic of the unity and interpenetration of opposites in science
  18. Appendix: Quantum mechanics and dialectical materialism
  19. End note and Bibliography

Acknowledgements
This book was written in the hope that it will make a contribution to a lively debate on Marxism and science. Thanks to all those who read and commented on the manuscript, including Iain Dalton, Ken Douglas, John Edwards, Roy Farrar, Thomas House, Ruth Mason, Sofia Mason, Ronnie Sukdeho, Peter Taaffe and Manny Thain. Thanks especially to Lynn Walsh for his insightful comments and considerable patience as editor of this book. The Preface to the Fourth edition I hope gives credit where credit is due. A special thanks also to Geoff Jones, whose comments on the manuscript, based on a life-long experience of teaching advanced physics, were invaluable.


Preface to the 3rd Edition

June 2012

In 2011, the newspapers broke a major story: Scientists operating the biggest machine on earth, the 27 kilometre Large Hadron Collider, had discovered evidence which appeared to disprove Einstein’s theory of relativity.

The Large Hadron Collider, deep underground below the French-Switzerland border near Geneva, powers subatomic particles to within a fraction of the speed of light. The apparent discovery of faster-than-light neutrinos, tiny subatomic particles produced at the site, would not only defy Einstein’s special relativity but would disobey the law of conservation of energy as well. (New Scientist, 7 January 2012)

Scientists eagerly awaited further experimental results. Well-known physicist and TV personality Brian Cox said that if the result was correct it opened the possibility of time travel, while another well-known TV scientist, Jim Al-Khalili, rejected the results, saying that if neutrinos have broken the speed of light, “I will eat my boxer shorts on live TV.” However, the team that produced the results found problems with their measuring methods. The team leader quietly resigned under a cloud and all bets are off. It seems that Al-Khalili’s boxer shorts are safe.

Twenty years ago, newspapers ran stories of scientific results which appeared to disprove the Big Bang theory of the origins of the universe.

A number of books and articles argued the same thing. For example, “Big Bang’s Defenders Weigh Fudge Factor, A Blunder of Einstein’s, As Fix for New Crisis” in the New York Times, 1 November 1994. 

The Big Bang Never Happened, by Eric Lerner, published in 1991, was highly critical of the scientific establishment. In 1995, Science and the Retreat from Reason, by John Gillott and Manjit Kumar, expressed a deep unease about modern science. Rich in quotes from pseudo-Marxists of the Frankfurt school (on which one word later), the authors curiously make not one single mention of the Big Bang theory, the major science story of the time, and one under attack for being a ‘creation story’ by critics. This astonishing omission, in a book whose aim was to provide a Marxist critique of modern science, indicates some loss of nerve. Nevertheless, the authors falsely maintain that modern science has departed from ‘reason’. The most common scientific interpretation of quantum mechanics – the highly successful science of atoms and other microscopic particles – “was and remains a subjective one”, the authors assert, adding, “it often lapses into outright solipsism”.

The publicity suggested that science was suffering a deep crisis. The book under review in the following pages, Reason in Revolt, published in 1995, argued that major scientific discoveries of the current epoch, including Einstein’s general theory of relativity and the Big Bang theory, must be incorrect. Marxist philosophy, the book argued, shows that these scientific theories are a retreat into mysticism and creation mythology. Reason in Revolt leans heavily on Lerner’s The Big Bang Never Happened, and to some extent reflects the attacks found in Gillott and Kumar, referenced above.

By contrast, Science, Marxism and the Big Bang argues that Marxist philosophy does not provide a ready-made key for making judgements about scientific ideas. Today the Big Bang theory – the idea that our universe has an origin in time and is evolving – is entering popular consciousness while Reason in Revolt, whose misrepresentation of Marxist philosophy we set out to expose, is long forgotten. But the ideas discussed in the following pages, including a defence of Einstein’s theory and the Big Bang theory, have stood the test of time and remain of interest to Marxists today.

As materialists, Marxists accept the scientific theories that over time have been confirmed and integrated into the general scientific outlook of the period, such as Einstein’s theory of relativity and, more recently, the Big Bang theory. We understand that these ideas arose as part of an historical process of discovery which is materialist at root. But as we attempt to show in these pages, we also recognise that this historical process has not ended, reaching some kind of ultimate stage of absolute knowledge. The Large Hadron Collider, the world’s largest and highest-energy particle accelerator, was powering up at the European Organization for Nuclear Research (CERN) facilities in Geneva as the first edition of this book went to print. We pointed out that many scientists expected results from the collider to provide “upsets and pose new challenges” – and they have. Many theories have failed as the particles they predicted have not emerged from the vast jungle of data. Meanwhile Einstein’s theory of relativity has survived and newspaper headlines were recently busy reporting glimpses of something lurking in the undergrowth which closely resembles the elusive Higgs Boson, thought to confer mass to particles. Many more experiments are needed to be sure of capturing this prey, and nothing is certain.

The philosophy of Marxism can help us understand the nature of scientific discovery, and this is another theme of this book, but it might be worth adding here a point not made explicit in the following pages: In common usage the word “theory” suggests an idea with a degree of speculation, while in scientific language even the most indisputable, well-established science may be termed a theory. In physics, scientific theories have to make definite predictions – not of a general kind, but of a quantifiable kind. To do so, scientists need to put numbers derived from experiments into mathematical equations. Newton used geometry as the basis of his epoch-making publication Principia Mathematica, in which the famous three laws of motion appear.

Using mathematics, a scientific theory in physics will tell you – to take one of Newton’s laws – that if you use a definite quantity of force on an object of a measured amount of mass, it will accelerate at a specific rate. With this kind of mathematical precision, we know that if experiments provided a different figure for the acceleration, the theory is wrong. According to Einstein’s theory, as an object’s speed approaches the speed of light, its mass increases also, and so proportionately more force is required to make it go faster. Particle accelerators like the Large Hadron Collider routinely demonstrate this fact as they accelerate atomic particles very close to the speed of light, requiring more and more force as the mass of the particle increases.

At the speed of light an accelerating object’s mass becomes infinite, and so an infinite amount of force would be needed to make the object go faster than light – and clearly this is impossible. But it is worth pointing out that if faster-than-light neutrinos were discovered and, hypothetically speaking, were always travelling faster than light (there is no suggestion that they were), then they would not pass through Einstein’s speed-of-light limit – which is not to say they wouldn’t cause any problems for physics.


In May 2011, the Earth-orbiting satellite Gravity Probe B confirmed two of Einstein’s space-time theories. One of NASA’s longest running experiments, the satellite proved the warping of space and time caused by gravitational fields. This warping of space and time is ridiculed as a “medieval” viewpoint in Reason in Revolt, reflecting a doctrinaire approach previously best exemplified by the treatment of science under Stalin. Adherents of Stalin in the field of science ridiculed as “subjective idealism” a fundamental pillar of Einstein’s theory of relativity – the principle that space is relative to the observer or specific frame of reference (a principle which becomes more astonishing the more it is considered). Yet the discovery of this principle predates Einstein by many centuries. In no sense should this principle be interpreted to mean that space and time are somehow subjective to the individual – it is an entirely objective phenomenon, as we attempt to show in the pages of this book.

Gravity Probe B also confirmed the amount by which the spinning earth actually pulls space and time with it as it rotates. “Imagine the Earth as if it were immersed in honey,” said Francis Everitt, Gravity Probe-B principal investigator at Stanford University. “As the planet rotates, the honey around it would swirl, and it’s the same with space and time”. (Gravity Probe B Confirms Two of Einstein’s Space-Time Theories, Universe Today, 4 May 2011)

Does this result mean that Einstein’s theory is beyond further challenge? Not at all. Science, Marxism and the Big Bang tries to explain that historically, scientific laws such as those discovered by Newton or Einstein are not simply either true or false, as some would like to believe. Instead, a more flexible, “dialectical” outlook is required, a core view of which is that in the real world any particular thing, whether it is an atom or a particular scientific outlook, contains within it contradictory elements or opposites. The ancient Greeks argued that anything which lacked such internal contradictions could never change, and would exist for all eternity. They recognised the impermanence of all things outside the ‘Heavens’, the starry firmament where the gods were thought to reside. Only among the stars could the Greeks detect no sign of change. The Big Bang theory shows that even the starry heavens – the universe itself – are subject to coming in to being and passing away, the ancient dialectic of becoming.

Contradictions are part of science as it develops. We show how Newton was aware of serious contradictions in his own theory of gravity, which were only resolved by Einstein and the Big Bang theory centuries later. Einstein’s theory has limits to its application, particularly at the microscopic level, and scientists are always testing it – as they explicitly did during what was to have been a rather routine neutrino experiment at CERN. Yet, when Einstein’s theory is finally superseded by one which combines quantum mechanics and relativity in a single theoretical sweep (the loftiest aim of theoretical physicists), atom bombs unfortunately will still explode and space and time will still warp as observed by Gravity Probe B and predicted by Einstein a century ago. It is simply that our understanding of the mechanisms underlying these things will have advanced. Today, Marxists must base their materialist outlook on the conquests of science on which our technological age turns.

Books like Reason in Revolt prophesied the imminent collapse of the Big Bang theory, yet in the last decade in particular the theory has begun to enter into popular consciousness. There is even a sit-com named after it. It is quite reasonable to view the universe being born and developing over time, with its stars and galaxies also being born and dying as they consume the hydrogen created in the Big Bang, ultimately creating the stardust of which we humans are built. The old static Newtonian view promoted in Reason in Revolt, which holds that the universe has always been more or less as it is now – “Thus it has been. Thus it will ever be” as Woods intones – already perhaps seems inherently implausible, at least to a younger generation. The stars do not have an infinite amount of fuel to burn over an infinity of time. If they did, where would this fuel come from?

Author Alan Woods has not come to the defence of Reason in Revolt, a book he claimed outlined “the fundamentals of Marxism”, against our carefully explained observations of its many serious failings. It is certainly unusual for Woods to avoid confrontation.


In the academic world, the main objection to our approach to Marxist philosophy, as explained in Science, Marxism and the Big Bang, comes from a trend of Marxism (in reality pseudo-Marxism) which proselytises that Marxist dialectics can have nothing to do with nature. First to argue this point of view was George Lukács, a founder of the philosophical trend of so-called ‘Western Marxism’ of which the Frankfurt school of Marxism is part, in a footnote dismissively critical of Frederick Engels. George Novack correctly castigated the Frankfurt school, associated with philosophers like Herbert Marcuse, Theodor Adorno and Max Horkheimer, for regarding Engels, Marx’s co-thinker and life-long friend, as the “original adulterator and distorter of Marx’s thought”. (Polemics in Marxist Philosophy, p. 138)

The Frankfurt school falsely attempts to disassociate the philosophy of Marx, or at least those of his earliest writings, from the philosophy found in Engels’ writings, from which we often quote in the following pages. Science, Marxism and the Big Bang does not discuss these attacks on genuine Marxism directly. We merely point out here that we take an historical approach to understanding the philosophy of Marxist dialectics, showing under what material conditions our philosophy arose. This approach irrefutably shows that the tradition which the revolutionary Marxist dialectic embraces, sweeps up in its comprehension the whole of nature, including the coming into being of the universe and its passing away. Marxists should take an historical materialist approach towards the philosophy of Marxism itself – the method which Marx and Engels developed, and a method which the foremost adherents of the Frankfurt school fail sufficiently to adopt in this case.

Reason in Revolt tends to make the philosophy of Marxism primary, such that scientific discoveries, if they are thought by Woods to contradict this philosophy, are dismissed. This doctrinaire approach turns dialectics into a kind of spiritual guide raised above the material world, an approach best illustrated by Lukács. A ghost-like disembodied spirit of dialectics (but not a materialist dialectics) stalks through Lukács’ History and Class Consciousness, providing theoretical hoops through which a similarly disembodied working class must jump. Since he intuited that this spirit could not make nature obey its mystical movements, Lukács originally declared that there was no dialectic of nature (although he later backtracked). But to quote Engels:

The mistake lies in the fact that these laws [of dialectics] are foisted on nature and history as laws of thought, and not deduced from them.

Dialectics of Nature

As Marxists, we must begin with nature and history as discovered over millennia by concrete, detailed and sometimes painstaking analysis, rather than beginning with philosophy. We thus reveal the genuine movement of nature and history – and in doing so we will inevitably find many surprises – but we will likely discover that this movement develops, as the ancient Greeks recognised, from the clash of opposites, of internal and external contradictions. As Leon Trotsky noted, this insight is valuable:

“The dialectic does not liberate the investigator from painstaking study of the facts, quite the contrary: it requires it. But in return it gives investigative thought elasticity, helps it cope with ossified prejudices, arms it with invaluable analogies, and educates it in a spirit of daring, grounded in circumspection.”

Trotsky’s Notebooks, 1933-35, p. 92, Columbia University Press, 1986

Our commonplace characterization of the material world – what is material reality and what is imaginary – is ultimately determined by scientific discovery, or more precisely, the historical accumulation of scientific discoveries, as they enter common currency. In other words, in the final analysis, a materialist dialectics is only as good as the accumulated science on which it stands. Those, like Woods, who argue, for example, that time and space cannot be warped in the way that Gravity Probe B demonstrated, because time and space are not material things, are actually reflecting past scientific (or philosophical) ideas, which have been overtaken by the latest scientific research.

The battle for primacy between philosophy and science was fought by Galileo in 1632 in his Dialogue Concerning the Two Chief World Systems, the book which earned him a summons to the Inquisition. And it was Galileo, not Einstein, who showed in this book that space was relative to the observer. On this great insight into nature, Galileo founded his arguments that the earth is moving at great speed through space despite the fact that we do not feel any motion, as we discuss in the following pages.

Reason in Revolt condemns the concept of the relativity of space as “subjective idealism”. It was with these same terms that the Stalinists attacked scientists in Russia who dared to support Einstein’s relativity in the 1950s. (See Appendix: Marxism, Materialism and Quantum Mechanics). Yet, as stated above this was Galileo’s great insight and like many Russian scientists in the 1930s and 1950s, Galileo suffered persecution. In his Dialogue, Galileo places in the mouth of Simplico, his imaginary opponent, the defence of those who make philosophy primary:

I have known some very great Peripatetic philosophers, and heard them advise their pupils against the study of mathematics as something which makes the intellect sophistical and inept for true philosophising.

Galileo replies through the voice of Salviati:

I endorse the policy of these Peripatetics of yours in dissuading their disciples from the study of geometry, since there is no art better suited for the disclosure of their fallacies.

Dialogue Concerning the Two Chief World Systems, p. 460)

In this edition we have appended an article which first appeared on the Committee for a Workers’ International website, entitled ‘Quantum mechanics and dialectical materialism’. Science, Marxism and the Big Bang mainly deals with large scale events and their relationship to the Marxist philosophy of dialectics, while this appendix looks at the truly weird science of very small scale events and examines their relationship to the Marxist philosophy of materialism.

Next: Introduction